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Starting with the wave function characterizing massless fermions evolving in
orthogonal electric and magnetic fields, written in terms of Heun Biconfluent functions,
we analyse some physically interesting cases. When the HeunB function truncates to
a polynomial form, one may easily compute the essential components of the conserved
current density. For a vanishing electric field, we get the familiar Hermite associated
functions and discuss the current dependence on the sample width. In the opposite case,
corresponding to an electric static field alone, one has to deal with HeunB functions
of complex variable and parameters.
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1. INTRODUCTION

By “graphene”, one generally denotes one planar layer of carbon atoms, ar-
ranged on a honeycomb structure made out of hexagons. Its low-energy excitations
are massless, chiral, pseudo-particles, moving with a speed 300 times smaller than
the speed of light [1].

As a special feature and also a trademark of Dirac fermion behaviour, which
makes graphene a very attractive material from a theoretical point of view, is the
anomalous integer quantum Hall effect measured experimentally [2], at room tem-
perature [3].

Because the energetic states of the positrons within the barrier are aligned to
the continuous energetic states of the electrons outside the barrier, these carriers are
transmitted with unit probability [4]. As a result to the insensitivity to external elec-
trostatic potentials, they evolve in an unusual way in the presence of confining po-
tentials that can be easily produced by disorder [5].

The properties of chiral massless particles, belonging to the distinct sub-lattices
in graphene and described by the Dirac equation near the two points K and K ′, be-
ing an active field of research, in a previous paper [6], we have considered a strong
magnetic induction orthogonal to a weak electrostatic intensity. By employing the
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perturbation theory, we have derived the first-order transition amplitudes and the
corresponding current. Then, we have generalized this analysis for arbitrary static
magnetic and electric fields, and concluded that the Dirac-type equation of mass-
less fermions is satisfied by the Heun biconfluent functions [7]. Even though these
functions have been intensively worked out in the last years, in situations relevant
to physics, chemistry and engineering [8], there are problems when dealing with the
general expressions. That is why, for having a better understanding of the physical
phenomena, in the present paper, we focus on particularly interesting cases which
can be investigated by using the corresponding series expansions, for some ranges of
the parameters.

2. DIRAC-TYPE EQUATION AND FERMIONS’ WAVE FUNCTION

In natural units, i.e. ~= c= 1, the four-dimensional Dirac equation describing a
massless fermion evolving in an electric field orthogonal to a magnetic field, oriented
along Ox and Oz respectively, is

γiDiΨ = 0 , Di = ∂i− iqAi , (1)

where the covariant derivatives Di contains the components of the 4-potential

A2 =B0x , A4 = E0x.

Using the Dirac representation for γ matrices,

γµ =−iβαµ , γ4 =−iβ , (2)

with

β =

(
I 0
0 −I

)
, αµ =

(
0 σµ

σµ 0

)
,

where σµ are the usual Pauli matrices, we are looking for the positive-energy solution

Ψ(x,y,z, t) = ei(pyy+pzz−ωt)
(
ξ(x)
ϕ(x)

)
, (3)

where ξ and ϕ are the two-component spinors

ξ(x) =

(
ξ1(x)
ξ2(x)

)
, ϕ(x) =

(
ϕ1(x)
ϕ2(x)

)
. (4)

Thus, the Dirac equation (1) leads to the system of coupled equations

(a)σ1ξ′+ iσ2(py− qB0x)ξ+ iσ3pzξ = i [ω+ qE0x]ϕ ;

(b)σ1ϕ′+ iσ2(py− qB0x)ϕ+ iσ3pzϕ= i [ω+ qE0x]ξ , (5)

where ′ stands for the derivative with respect to x.
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Following the usual procedure, we express ϕ(x), from (5.a) and, by replacing it
into (5.b), we come to the following second-order differential equation for the spinor
ξ:

ξ′′− qE0

ω+ qE0x
ξ′− iq

ω+ qE0x

{
[ωB0 +pyE0]σ

1σ2 +E0 pz σ
1σ3
}
ξ

=
[
−(ω+ qE0x)2 + (py− qB0x)2 +p2z

]
ξ . (6)

As in [7], because the complicated form of the above equation, in the follow-
ings, we are working out the case pz = 0. This assumption which appears in most of
the works devoted to the (2+1)-quantum-relativistic study of graphene [9], is moti-
vated by the fact that the characteristic magnitude of pz is actually h/az , where az is
a length scale measuring the extent of the Pz orbitals.

Thus, we come to the following decoupled equations for the two components
of the spinor ξ

d2ξ1,2
dx2∗

− 1

x∗

dξ1,2
dx∗

+
εp

x∗
ξ1,2 +

[
d2x2∗− b2

(
x∗−

p

b

)2]
ξ1,2 = 0 , (7)

where ε=±1, for ξ1, ξ2 respectively, and we have introduced the notations

x∗ ≡ x+
ω

qE0
, b≡ qB0, d≡ qE0, p≡ py +ω

B0

E0
. (8)

For p= 0 and EH =−E0, the last relation in (8) is the quantum analog of the
well-known classical Hall relation, EH =B0 v and the solutions of (5) are expressed
in terms of the trigonometric sine and cosine functions, for d > b, and hyperbolic
Sinh and Cosh functions, for b > d.

For p 6= 0 and arbitrary external static fields, whose intensities are related to
each other as b > d, the perturbative approach developed in [6] is no longer valid.
Thus, in order to solve the equation (7), we have introduced, in [7], the new function,
u(x∗), by

ξ(x∗) = x2∗ exp
[
C1x

2
∗+C2x∗

]
u(x∗) , (9)

where the parameters C1 and C2 are

C1 =− 1

2λ2
, C2 = bpλ2 , (10)

with

λ2 =
1√

b2−d2
= `2B

[
1− d

2

b2

]−1/2
, (11)

`B =
√
~/qB0 being the magnetic length.

With the dimensionless variable ζ = x∗/λ, the function u satisfies the second
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order differential equation

d2u

dζ2
+

1

ζ

[
−2ζ2 + 2bpλ3ζ+ 3

] du
dζ

+
[(
p2d2λ6−4

)
ζ+pλ

(
3bλ2 +ε

)] u
ζ

= 0 , (12)

which can be compared with the so-called Heun Biconfluent Equation [10]

d2u

dζ2
+

1

ζ

[
−2ζ2−βζ+α+ 1

] du
dζ

+

[
(γ−α−2)ζ− δ+β+αβ

2

]
u

ζ
= 0 , (13)

so that u is the function HeunB[α, β, γ, δ; ζ], with the parameters

α= 2, β =−2bpλ3, γ = p2d2λ6, δ =−2εpλ . (14)

Generally, for a differential equation which can be cast in the form

[F (D) +P (x, d/dx)]u(x) = 0 ,

whereD≡ x d
dx , F (D) =

∑
nanD

n is a diagonal operator in the space of monomials
and P (x, d/dx) is an arbitrary polynomial function of x and d/dx, the necessary
condition for a polynomial form of u is [11]

F (D)xn = 0 . (15)

By inspecting the equation (12), one can identify F (D) =−2D+p2d2λ6−4,
so that the condition (15) concretely becomes

p2d2λ6−4 = 2n, (16)

leading to the following energy quantization law

ωn = c
√

2(n+ 2)qB0~

[
1−
(
E0

cB0

)2
]3/4
−py

E0

B0
, (17)

where we have restored c and ~ for a better comparison with data.
Besides the Hall term pyE0/B0, the first term in the right hand side is typical

for the energy levels of graphene’s carriers evolving in static magnetic inductions [2].
Putting everything together, we are able to write down the full expression of

the wave function (3), up to a normalization factor N , as

Ψ =N ei(pyy−ωt) exp

[
− ζ

2

2
+aζ

]

×


ζ2HB1

ζ2HB2

− i
dλ2

[
2−
(
bλ2 + 1

)(
ζ2−pλζ

)
+ ζ ddζ

]
HB2

− i
dλ2

[
2 +
(
bλ2−1

)(
ζ2 +pλζ

)
+ ζ ddζ

]
HB1

 , (18)
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where

a≡ (pλ)(bλ2) =
√

2(n+ 2)
b

d
(19)

and HB1,2 ≡HeunB
[
2,−2a, p2d2λ6,∓2pλ ; ζ

]
.

3. THE HALL-TYPE CURRENT

Even though we got an analytical solution to the equation (1), it is not easy to
deal with the HeunB functions in (18) since they are very sensitive to the parameters
values and, up to know, their normalization procedure is not well understood.

According to the exponential argument, for ζ ∈ [0 , 2a], we experience the most
interesting behaviour. Thus, for ζ ∈ [0 , 1] and a > 1, we are in the region of amplifi-
cation whose amplitude increases as a gets larger.

The physically interesting case corresponding to ζ � 1, is leading, in view
of (8, 11, 17), to the following conditions which should be satisfied by the model
parameters:

x� λ= `B

[
1− d

2

b2

]−1/4
and

ω� dλ ⇒ n+ 2� b2d2

2(b2−d2)2
.

Besides the sample’s width, the above relation is imposing d close enough to b and
a maximum value of the quantum number n. However, in many theoretical studies,
the energy separation between the Landau levels is considered to be large enough to
justify the use of the lowest Landau level (LLL) approximation.

For ζ� 1, one may use the following series expansions for u and its derivatives

u= 1 + c1ζ+ c2ζ
2 + · · ·=

∞∑
n=0

cnζ
n ,

u′ = c1 + 2c2ζ+ 3c3ζ
2 + · · ·=

∞∑
n=1

ncnζ
n−1 ,

u′′ = 2c2 + 6c3ζ+ 12c4ζ
2 + · · ·=

∞∑
n=2

n(n−1)cnζ
n−2 ,

(20)
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and, by setting to zero the coefficients of ζ−1, ζ0 and ζ, we get

c1 =−pλ
(
bλ2 +

ε

3

)
< 0;

c2 =
(pλ)2

2

[
bλ2
(
bλ2 +

5

12
ε

)
+

1

4

]
+

1

2
> 0;

c3 =− (pλ)3

6

[(
bλ2
)2(

bλ2 +
13

20
ε

)
+

5

6

(
bλ2 +

11

50
ε

)]
− pλ

6

[
19

5
bλ2 +ε

]
.

(21)

Since the quantity aζ is also much less than 1, one can approximate the function
u in (20), with the coefficients (21), with exp[−aζ]. This allows us to write down the
following easily handling expression for the wave function (18),

Ψ = N ei(pyy−ωt) exp

[
− ζ

2

2

]
ζ2

ζ2

− i
dλ2

[
2 +pλζ−

(
bλ2 + 1

)
ζ2
]

− i
dλ2

[
2−pλζ+

(
bλ2−1

)
ζ2
]
 , (22)

which obviously is the superposition of two orthogonal modes, associated to the
pseudo-spin states belonging to the two sub-lattices that exist in graphene [1],

Ψup =N ei(pyy−ωt) exp

[
− ζ

2

2

]
ζ2

0
− i
dλ2

[
2− ζ2

]
i
dλ2

[
pλζ− bλ2ζ2

]
 ;

Ψdown =N ei(pyy−ωt) exp

[
− ζ

2

2

]
0
ζ2

− i
dλ2

[
pλζ− bλ2ζ2

]
− i
dλ2

[
2− ζ2

]
 .

(23)

The non-vanishing components of the current density defined as

ji = iq Ψ̄γiΨ, Ψ̄ = Ψ†β , (24)

are the electric charge density
ρe = qΨ†Ψ ,

which is generating an electric potential through the Poisson equation and the spatial
component, jy, whose dependence on the external fields intensities is

jy = qΨ†α2Ψ =
4q

d
|N |2 ζ

2

λ2
[
pλζ− bλ2ζ2

]
exp

[
−ζ2

]
=

4

E0
|N |2 x

2
∗
λ4

[(
py +ω

b

d

)
x∗− bx2∗

]
exp

[
−x

2
∗
λ2

]
≈ 4q2

E0
|N |2

(
x+

ω

qE0

)3 (
B2

0 −E2
0

)
(py− qB0x) ,

(25)
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ω being quantized as in (17).

4. THE MAGNETIC FIELD ALONE

The case corresponding to a zero electric field deserve a closer look. Now, for
ω 6= 0 and pz = 0 = E0, the equation (6) gets a simpler form,

d2ξ1,2
dx2

+
[
ω2− (py− qB0x)2± qB0

]
ξ1,2 = 0 , (26)

which is, for each component of ξ, an oscillator-type equation. The solution

ξ = (qB0)
1/4

(
ψn(τ)
ψn−1(τ)

)
,

is leading, using (5.a) written as

σ1
dξ

dx
+ iσ2(py− qB0x)ξ = iωϕ ,

to

ϕ= i(qB0)
1/4

(
ψn(τ)

−ψn−1(τ)

)
,

with
ψn(τ) = Cne

−τ2/2Hn(τ) ,

where Cn is the normalization constant of the Hermite associated functions of di-
mensionless variable

τ ≡ 1√
qB0

(qB0x−py) =
x

`B
−py`B . (27)

The full wave function corresponding to the spectrum ωn =
√

2nqB0, with
n≥ 1, being

Ψ0 =

√
ωn

2π
(qB0)

1/4


ψn
ψn−1
iψn
−iψn−1

ei(pyy−ωt) , (28)

the observed current along Oy, in a given quantum state, for −D/2 ≤ x ≤ D/2,
where D is the sample width, can be computed as

Jn =
q

π2
ωn
√
qB0

∫ D
2

−D
2

ψn(τ)ψn−1(τ)dx

=
q

π2
ωn

∫ D
2`B
−py`B

− D
2`B
−py`B

ψn(τ)ψn−1(τ)dτ ,

(29)

obviously vanishing for D� `B .
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For a semi-infinite graphene plane perpendicular to the magnetic fieldB0, with-
out any boundary condition, the current along Oy, has the following expressions for
even respectively odd n-values,

J evenn =
q

π2
ωn

2n−1
√

2π√
(n−1)!n!

1[
Γ
(
1−n
2

)]2
(

1 +
p2y
qB0

)
,

J oddn =
q

π2
ωn

2n−1
√

2π√
(n−1)!n!

2

n
[
Γ
(
− n

2

)]2
(

1−
p2y
qB0

)
,

where
Jn=2k

Jn=2k+1
=

2k

2k+ 1
,

for p2y� qB0.
In the opposite case, meaning D� `B = 25/

√
B0 (nm), to first order in D/`B

and py`B � 1, the current (29) is linearly depending on D

Jn ∼
q

π2
ωnpyD .

For ω = 0, the equations in the system (5) (with E0 = 0 and pz = 0) decouple
and the wave function corresponding to this dispersionless energy band is

Ψ0 ∼ exp

(
−1

2
τ2
)

0
1
0
1

 ,
with τ given by (27). One may notice that the above expression exists also for zero-
magnetic field, when it behaves like expy , being an edge state, for py < 0.

5. CONCLUSIONS

For massless fermions evolving in orthogonal electric and magnetic fields, the
solution to the Dirac equation is expressed in terms of the biconfluent Heun functions.
The exponential in (18) gets a maximum value for ζ = a, meaning in view of (8),

x∼ ω

qE0

E2
0/c

2

B2
0

and is exponentially dumping, for a� 1, once ζ > a. However, one should be care-
ful about the size, especially in strong magnetic fields since, once the samples get
narrower (than about 40 nm), the electrical characteristics of the devices are more
sensitive to temperature and to current fluctuations (current noise). These are sig-
nificantly increasing as the device dimension shrinks [12] as an impact of the edge
states.
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If the electric field vanishes, the situation gets significantly simpler because the
chiral wave function gets a familiar form expressed in terms of the Hermite associated
functions, for unconfined harmonic oscillators, exhibiting n zeros.

For the physically relevant case of a semi-infinite graphene sheet with zigzag
edges [13], the condition of an additional zero for the functions ψn in the origin
of axes, provides a transcendental equation for the allowed values of the particle
momentum along Oy,

ψn

(
− py√

qB0

)
≡ 0 .

Once an week electric field along Ox is applied, one may employ the pertur-
bation theory, [6], to evaluate the first-order transition amplitude between initial and
final states characterized by the wave functions (28).

As a final remark, we would like to say that even though today it is no doubt
that Heun’s functions are successfully succeeding the hypergeometric ones in study-
ing a whole range of phenomena, starting with the theory of quantum systems [14]
to astrophysics [15], to the best of our knowledge, there are problems with their nor-
malization and in evaluating the power-series representations, for some domains of
the variable [16].

For example, in the physically interesting case corresponding to B0 = 0, the
equation (7) will be replaced by

d2ξ1,2
dx2∗

− 1

x∗

dξ1,2
dx∗

+ε
py
x∗
ξ1,2 +

[
d2x2∗−p2y

]
ξ1,2 = 0 , (30)

where d and x∗ are defined in (8). Following the same procedure as in section 2, the
function u(x∗), introduced by

ξ(x∗) = x2∗ exp

[
i
dx2∗
2

]
u(x∗) , (31)

is the HeunB function of complex variable

ζ =
√
−idx∗ = − 1√

2
(1− i)

√
dx∗ ,

and complex γ and δ parameters. This can be understood as a sort of complex duality,
which operates in between the Hermite and the parabolic cylinder functions ( of
variable (1± i)τ ), respectively.

In terms of available soft, the treatment of Heun’s equations can be done only
with MAPLE routines which are working well in particular cases, but are breaking
down for values of the parameters which might be of interest. That is why, as the aim
of a coming paper, we plan to compare the analytical results derived in this work to
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the ones obtained within a numerical analysis of the original system (5).
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