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A particular case of consistent interactions of a single massless tensor field with
the mixed symmetry corresponding to a two-column Young diagram (k,1), dual to
linearized gravity in D = k+3, namely k = 4, is considered in the context of cross-
interactions with another dual formulation of linearized gravity in terms of a massless
tensor field with the mixed symmetry of the linearized Riemann tensor. The general
approach relies on the deformation of the solution to the master equation from the
antifield-BRST formalism by means of the local cohomology of the BRST differential.
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1. INTRODUCTION

The purpose of this work is to investigate the consistent interactions between a
single massless tensor field with the mixed symmetry (4,1) and one massless tensor
field with the mixed symmetry (2,2). Our analysis relies on the deformation of the
solution to the master equation [1] by means of cohomological techniques with the
help of the local BRST cohomology [2–4], whose component in the (4,1) can be
solved along the same line like in [5] or [6] and in the (2,2) sector has been inves-
tigated in [7, 8]. Apart from the duality of the massless tensor field with the mixed
symmetry (4,1) to the Pauli–Fierz theory (linearized limit of Einstein–Hilbert gra-
vity) in D = 7 dimensions, it is interesting to mention the developments concerning
the dual formulations of linearized gravity from the perspective of M -theory [9–11].
On the other hand, the massless tensor field with the mixed symmetry (2,2) displays
all the algebraic properties of the Riemann tensor, describes purely spin-two parti-
cles, and also provides a dual formulation of linearized gravity in D = 5. Actually,
there is a revived interest in the construction of dual gravity theories, which led to
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several new results, viz. a dual formulation of linearized gravity in first order tetrad
formalism in arbitrary dimensions within the path integral framework [12] or a re-
formulation of non-linear Einstein gravity in terms of the dual graviton together with
the ordinary metric and a shift gauge field [13].

The method from [1] has been widely used in the literature at the construction
of various interacting models, such as BF models [14], tensor fields of degree two
[15], or D = 11 SUGRA [16].

Under the hypotheses of analyticity, locality, Lorentz covariance, and Poincaré
invariance of the deformations, combined with the requirement that the interaction
vertices contain at most two spatiotemporal derivatives of the fields, we prove that
there exists a case where the deformation of the solution to the master equation
provides non-trivial cross-couplings. This case corresponds to a seven-dimensional
spacetime and is described by a deformed solution that stops at order two in the cou-
pling constant. In this way we establish a new result, namely that dual linearized gra-
vity in D= 7 gets coupled to a purely spin-two field with the mixed symmetry of the
Riemann tensor. The interacting Lagrangian action contains only mixing-component
terms of order one and two in the coupling constant. Both the gauge transformations
and first-order reducibility functions of the tensor field (4,1) are modified at order
one in the coupling constant with terms characteristic to the (2,2) sector. On the
contrary, the tensor field with the mixed symmetry (2,2) remains rigid at the level of
both gauge transformations and reducibility functions. The gauge algebra and the re-
ducibility structure of order two are not modified during the deformation procedure,
being the same like in the case of the starting free action. It is interesting to note that
if we require the PT invariance of the deformed theory, then no interactions occur.
The results exposed here generalize the previous findings from [17] between a mass-
less tensor field with the mixed symmetry (3,1) and one with the mixed symmetry
of the Riemann tensor.

2. FREE MODEL

We begin with a Lagrangian action describing a free massless tensor field with
the mixed symmetry (4,1) [18], tµ1µ2µ3µ4|α, and one with the mixed symmetry of
the Riemann tensor, rµ1µ2|α1α2

SL
[
tµ1µ2µ3µ4|α, rµ1µ2|α1α2

]
= SL

[
tµ1µ2µ3µ4|α

]
+SL

[
rµ1µ2|α1α2

]
, (1)
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in D ≥ 6 spatiotemporal dimensions, where

SL
[
tµ1µ2µ3µ4|α

]
=− 1

2 ·4!

∫
dDx

[(
∂µtµ1µ2µ3µ4|α

)
∂µtµ1µ2µ3µ4|α

−
(
∂αtµ1µ2µ3µ4|α

)
∂βt

µ1µ2µ3µ4|β−4
(
∂λtλµ1µ2µ3|α

)
∂ρt

ρµ1µ2µ3|α

−4(∂µtµ1µ2µ3)∂µtµ1µ2µ3−8
(
∂αtµ1µ2µ3µ4|α

)
∂µ1tµ2µ3µ4

+12
(
∂λtλµ1µ2

)
∂ρt

ρµ1µ2
]
, (2)

and

SL
[
rµ1µ2|α1α2

]
=

∫
dDx

[
1

8

(
∂λrµ1µ2|α1α2

)(
∂λrµ1µ2|α1α2

)
− 1

2

(
∂µ1r

µ1µ2|α1α2

)(
∂ν1rν1µ2|α1α2

)
−
(
∂µ1r

µ1µ2|α1α2

)
(∂α2rµ2α1)− 1

2
(∂µ1rµ2α1)(∂µ1rµ2α1)

+(∂µ1r
µ1α1)(∂ν1rν1α1)− 1

2
(∂µ1r

µ1α1)(∂α1r) +
1

8
(∂µ1r)(∂µ1r)

]
. (3)

Everywhere in this paper we employ the flat Minkowski metric of ‘mostly plus’
signature. The massless tensor field tµ1µ2µ3µ4|α has the mixed symmetry (4,1),
and it is completely antisymmetric in its first 4 indices and satisfies the identity
t[µ1µ2µ3µ4|α] ≡ 0. Here and in the sequel the notation [µ1 . . .µn] signifies complete
antisymmetry with respect to the (Lorentz) indices between brackets. The trace of
tµ1µ2µ3µ4|α is defined by tµ1µ2µ3 = σµ4αtµ1µ2µ3µ4|α and it is antisymmetric. The
massless tensor field rµ1µ2|α1α2

of degree 4 has the mixed symmetry of the line-
arized Riemann tensor, so it is separately antisymmetric in the pairs {µ1,µ2} and
{α1,α2}, symmetric under the interchange of these pairs, and satisfies the identity
r[µ1µ2|α1]α2

≡ 0 associated with the above diagram. The notation rµ1α1 signifies the
trace of the original tensor field, rµ1α1 = σµ2α2rµ1µ2|α1α2

, which is symmetric, while
r denotes its double trace, which is a scalar.

A generating set of gauge transformations for action (1) can be taken of the
form

δχ,εtµ1µ2µ3µ4|α = ∂[µ1 χµ2µ3µ4]|α+∂[µ1 εµ2µ3µ4]α−4∂αεµ1µ2µ3µ4 , (4)

δξrµ1µ2|α1α2
= ∂µ1ξα1α2|µ2−∂µ2ξα1α2|µ1 +∂α1ξµ1µ2|α2

−∂α2ξµ1µ2|α1
. (5)

The gauge parameters εµ1µ2µ3µ4 are completely antisymmetric, χµ1µ2µ3|α possess
the mixed symmetry (3,1), and ξµ1µ2|α1

display the mixed symmetry (2,1), such
that they are antisymmetric in their first 3 and respectively 2 indices and satisfy the
identities χ[µ1µ2µ3|α] ≡ 0 and ξ[µ1µ2|α1] ≡ 0. The generating set of gauge transfor-
mations (4)–(5) is off-shell, third-order reducible, the accompanying gauge algebra
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being obviously Abelian.

3. FREE BRST SYMMETRY

The construction of the antifield-BRST symmetry for this free theory debuts
with the identification of the algebra on which the BRST differential s acts. The
generators of the BRST algebra are of two kinds: fields/ghosts and antifields(

tµ1µ2µ3µ4|α, rµ1µ2|α1α2

)
,

(
(1)

C µ1µ2µ3|α,
(1)
η µ1µ2µ3µ4 ,Cµ1µ2|α

)
, (6)(

(2)

C µ1µ2|α,
(2)
η µ1µ2µ3 ,Cµ1µ2

)
,

(
(3)

C µ1|α,
(3)
η µ1µ2

)
,

(
(4)
η µ1

)
, (7)

(
t∗µ1µ2µ3µ4|α, r∗µ1µ2|α1α2

)
,

(
(1)

C

∗µ1µ2µ3|α

,
(1)
η
∗µ1µ2µ3µ4

,C∗µ1µ2|α
)
, (8)(

(2)

C

∗µ1µ2|α

,
(2)
η
∗µ1µ2µ3

,C∗µ1µ2
)
,

(
(3)

C

∗µ|α

,
(3)
η
∗µ1µ2

)
,

(
(4)
η
∗µ1)

. (9)

The ghosts
(1)
η µ1µ2µ3µ4 ,

(1)

C µ1µ2µ3|α, and Cµ1µ2|α are all fermionic and respectively
associated with the gauge parameters εµ1µ2µ3µ4 , χµ1µ2µ3|α, and ξµ1µ2|α1

and, mean-
while, display the same mixed symmetries like the corresponding parameters. The

ghosts for ghosts
(2)
η µ1µ2µ3 ,

(2)

C µ1µ2|α, and Cµ1µ2 are all bosonic and due to the first-
order reducibility relations. The first and the last are antisymmetric, while the second

exhibits the mixed symmetry (2,1). Regarding the ghosts for ghosts for ghosts
(3)

C µ1|α

and
(3)
η µ1µ2 , they are all fermionic, their presence being dictated by the second-order

reducibility relations. The former is symmetric and the latter antisymmetric. Finally,

the ghosts for ghosts for ghosts for ghosts
(4)
η µ1 are a consequence of the third-order

reducibility specific to the (4,1) sector. The antifields carry a star and there is one an-
tifield for each field/ghost, of opposite statistics, but with the same mixed symmetry
like the corresponding field/ghost.

Since both the gauge generators and reducibility functions for this model are
field-independent, it follows that the BRST differential s simply reduces to

s= δ+γ, (10)

where δ represents the Koszul–Tate differential, graded by the antighost number agh
(agh(δ) =−1), and γ stands for the exterior derivative along the gauge orbits, whose
degree is named pure ghost number pgh (pgh(γ) = 1). In this situation γ is a true
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differential. These two degrees do not interfere (agh(γ) = 0, pgh(δ) = 0). The
overall degree that grades the BRST complex is known as the ghost number (gh)
and is defined like the difference between the pure ghost number and the antighost
number, such that gh(s) = gh(δ) = gh(γ) = 1. According to the standard rules
of the BRST method, the corresponding degrees of the generators from the BRST
complex, (6)–(9), are valued like

pgh
(
tµ1µ2µ3µ4|α

)
= 0 = pgh

(
rµ1µ2|α1α2

)
, (11)

pgh

(
(1)

C µ1µ2µ3|α

)
= pgh

(
(1)
η µ1µ2µ3µ4

)
= pgh

(
Cµ1µ2|α

)
= 1, (12)

pgh

(
(2)

C µ1µ2|α

)
= pgh

(
(2)
η µ1µ2µ3

)
= pgh(Cµ1µ2) = 2, (13)

pgh

(
(3)

C µ1|α

)
= 3 = pgh

(
(3)
η µ1µ2

)
, pgh

(
(4)
η µ1

)
= 4, (14)

agh
(
t∗µ1µ2µ3µ4|α

)
= 1 = agh

(
r∗µ1µ2|α1α2

)
, (15)

agh

(
(1)

C

∗µ1µ2µ3|α)
= agh

(
(1)
η
∗µ1µ2µ3µ4)

= agh
(
C∗µ1µ2|α

)
= 2, (16)

agh

(
(2)

C

∗µ1µ2|α)
= agh

(
(2)
η
∗µ1µ2µ3)

= agh(C∗µ1µ2) = 3, (17)

agh

(
(3)

C

∗µ|α)
= 4 = agh

(
(3)
η
∗µ1µ2)

, agh

(
(4)
η
∗µ1)

= 5. (18)

It is understood that the missing degrees are all equal to zero.
Actually, (10) is a decomposition of the BRST differential according to the

antighost number and it shows that s contains only components of antighost number
equal to minus one and zero. The Koszul–Tate differential is imposed to realize a
homological resolution of the algebra of smooth functions defined on the stationary
surface of field equations, while the exterior longitudinal derivative is related to the
gauge symmetries (see relations (4)–(5)) of action (1) through its cohomology at pure
ghost number zero computed in the cohomology of δ, which is required to be the al-
gebra of physical observables for the free model under consideration. The nontrivial
actions of δ and γ on the generators from the BRST complex, which enforce all the
above mentioned properties, are given by

γtµ1µ2µ3µ4|α = ∂[µ1

(1)

C µ2µ3µ4]|α+∂[µ1

(1)
η µ2µ3µ4α]−5∂α

(1)
η µ1µ2µ3µ4 , (19)
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γrµ1µ2|α1α2
= ∂µ1Cα1α2|µ2−∂µ2Cα1α2|µ1 +∂α1Cµ1µ2|α2

−∂α2Cµ1µ2|α1
, (20)

γ
(m)

C µ1...µ4−m|α = ∂[µ1

(m+1)

C µ2...µ4−m]|α+∂[µ1

(m+1)
η µ2...µ4−mα] (21)

+(−)5−m (5−m)∂α
(m+1)
η µ1...µ4−m

, m= 1,2, γ
(3)

C µ1|α = ∂(µ1

(4)
η α), (22)

γ
(m)
η µ1...µ5−m

=
4−m
6−m

∂[µ1

(m+1)
η µ2...µ5−m], m= 1,2,3, γ

(4)
η µ1 = 0, (23)

γCµ1µ2|α = 2∂αCµ1µ2−∂[µ1 Cµ2]α, γCµ1µ2 = 0, (24)

δt∗µ1µ2µ3µ4|α =−
δSL

[
tµ1µ2µ3µ4|α

]
δtµ1µ2µ3µ4|α

, δr∗µ1µ2|α1α2 =−
δSL

[
rµ1µ2|α1α2

]
δrµ1µ2|α1α2

, (25)

δ
(1)

C

∗µ1µ2µ3|α

=−∂λ
(

4t∗λµ1µ2µ3|α+ t∗µ1µ2µ3α|λ
)
, (26)

δ
(2)

C

∗µ1µ2|α

= ∂λ

(
3

(1)

C

∗λµ1µ2|α

−
(1)

C

∗µ1µ2α|λ)
, (27)

δ
(3)

C

∗µ1|α

=−∂λ
(2)

C

∗λ(µ1|α)

, δ
(1)
η
∗µ1µ2µ3µ4

= 5∂αt
∗µ1µ2µ3µ4|α, (28)

δ
(m)
η
∗µ1...µ5−m

= (6−m)

(
∂α

(m−1)

C

∗µ1...µ5−m|α

+(−)m
5−m
7−m

∂λ
(m−1)
η
∗λµ1...µ5−m

)
, m= 2,3,4,

(29)

δC∗µ1µ2|α =−4∂βr
∗βα|µ1µ2 , δC∗µ1µ2 = 3∂αC∗µ1µ2|α. (30)

By convention, we take δ and γ to act like right derivations and omit the automatically
vanishing actions on the BRST generators.

The definitions of δ and γ acting on the BRST generators can be written in a
more compact form if we perform some appropriate transformations on the ghosts
and the corresponding antifields

(m)

C ′ µ1...µ4−m||α ≡
(m)

C µ1...µ4−m|α+ (6−m)
(m)
η µ1...µ4−mα, (31)

(m)

C ′
∗µ1...µ4−m||α

≡
(m)

C

∗µ1...µ4−m|α

+
1

6−m
(m)
η
∗µ1...µ4−mα

, (32)

with m= 1,3. The double bar “||” signifies that the corresponding variable satisfies
no additional identity except of being antisymmetric (where appropriate) with respect
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7 Consistent interactions between dual formulations of linearized gravity 475

to its indices located before the bars. Under these considerations, some of formulas
(19)–(30) take the simpler form

γtµ1µ2µ3µ4|α = ∂[µ1

(1)

C ′µ2µ3µ4]||α−
1

5
∂[µ1

(1)

C ′µ2µ3µ4||α], (33)

γ
(m)

C ′ µ1...µ4−m||α = ∂[µ1

(m+1)

C ′ µ2...µ4−m]||α, m= 1,2, (34)

γ
(3)

C ′µ1||α = 2∂µ1
(4)
η α, δ

(1)

C ′
∗µ1µ2µ3||α

=−4∂λt
∗λµ1µ2µ3|α, (35)

δ
(m)

C ′
∗µ1...µ4−m||α

= (−)m (5−m)∂λ

(m−1)

C ′
∗λµ1...µ4−m||α

, m= 2,3, (36)

δ
(4)
η
∗α

= 2∂µ1

(3)

C ′
∗µ1||α

. (37)

The Lagrangian BRST differential admits a canonical action in a structure
named antibracket and defined by decreeing the fields/ghosts conjugated with the
corresponding antifields, s· = (·,S), where (,) signifies the antibracket and S de-
notes the canonical generator of the BRST symmetry. It is a bosonic functional of
ghost number zero, involving both field/ghost and antifield spectra, that obeys the
master equation

(S,S) = 0. (38)

The master equation is equivalent with the second-order nilpotency of s, where its
solution S encodes the entire gauge structure of the associated theory. Taking into
account formulae (19)–(30) as well as the standard actions of δ and γ in canonical
form, we find that the complete solution to the master equation for the free model
under study is given by

S = SL
[
tµ1µ2µ3µ4|α, rµ1µ2|α1α2

]
+

∫
dDx

[
t∗µ1µ2µ3µ4|α

(
∂[µ1

(1)

C µ2µ3µ4]|α+∂[µ1

(1)
η µ2µ3µ4α]−5∂α

(1)
η µ1µ2µ3µ4

)

+

2∑
m=1

(m)

C

∗µ1...µ4−m|α(
∂[µ1

(m+1)

C µ2...µ4−m]|α+∂[µ1

(m+1)
η µ2...µ4−mα]

+(−)5−m (5−m)∂α
(m+1)
η µ1...µ4−m

)
+

(3)

C

∗µ1|α

∂(µ1

(4)
η α)

+
3∑

m=1

4−m
6−m

(m)
η
∗µ1...µ5−m

∂[µ1

(m+1)
η µ2...µ5−m]
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+ r∗µ1µ2|α1α2
(
∂µ1Cα1α2|µ2−∂µ2Cα1α2|µ1 +∂α1Cµ1µ2|α2

−∂α2Cµ1µ2|α1

)
+C∗µ1µ2|α1

(
2∂αCµ1µ2−∂[µ1 Cµ2]α

)]
, (39)

such that it contains pieces with the antighost number ranging from zero to four.

4. BRIEF REVIEW OF BRST DEFORMATION THEORY

There are three main types of consistent interactions that can be added to a
given gauge theory: (i) the first type deforms only the Lagrangian action, but not its
gauge transformations, (ii) the second kind modifies both the action and its transfor-
mations, but not the gauge algebra, and (iii) the third, and certainly most interesting
category, changes everything, namely, the action, its gauge symmetries and the ac-
companying algebra.

The reformulation of the problem of consistent deformations of a given action
and of its gauge symmetries in the antifield-BRST setting is based on the observation
that if a deformation of the classical theory can be consistently constructed, then the
solution to the master equation for the initial theory can be deformed into the solution
of the master equation for the interacting theory

S̄ = S+λS1 +λ2S2 +O
(
λ3
)
, ε

(
S̄
)

= 0, gh
(
S̄
)

= 0, (40)

such that (
S̄, S̄

)
= 0. (41)

Here and in the sequel ε(F ) denotes the Grassmann parity of F . The projection of
(41) on the various powers of the coupling constant induces the following tower of
equations:

λ0 : (S,S) = 0, (42)

λ1 : (S1,S) = 0, (43)

λ2 :
1

2
(S1,S1) + (S2,S) = 0, (44)

λ3 : (S1,S2) + (S3,S) = 0, (45)
...

The first equation is satisfied by hypothesis. The second one governs the first-order
deformation of the solution to the master equation, S1, and it expresses the fact that
S1 is a BRST co-cycle, sS1 = 0, and hence it exists and is local. The remaining equa-
tions are responsible for the higher-order deformations of the solution to the master
equation. No obstructions arise in finding solutions to them as long as no further res-
trictions, such as spatiotemporal locality, are imposed. Obviously, only non-trivial
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9 Consistent interactions between dual formulations of linearized gravity 477

first-order deformations should be considered, since trivial ones (S1 = sB) lead to
trivial deformations of the initial theory, and can be eliminated by convenient rede-
finitions of the fields. Ignoring the trivial deformations, it follows that S1 is a non-
trivial BRST-observable, S1 ∈H0 (s) (where H0 (s) denotes the cohomology space
of the BRST differential at ghost number zero). Once the deformation equations
((43)–(45), etc.) have been solved by means of specific cohomological techniques,
from the consistent non-trivial deformed solution to the master equation one can ex-
tract all the information on the gauge structure of the resulting interacting theory.

5. MAIN INGREDIENTS OF THE LOCAL BRST COHOMOLOGY

At this point we solve the deformation equations, (43)–(45), etc., in order to
construct all consistent interactions that can be added to the free model (2), (4)–
(5). We consider only analytical, local, and manifestly covariant deformations and,
meanwhile, restrict to Poincaré-invariant quantities, i.e. we do not allow explicit de-
pendence on the spatiotemporal coordinates. The analyticity of deformations refers
to the fact that the deformed solution to the master equation, (40), is analytical in the
coupling constant λ and reduces to the original solution (39) in the free limit (λ= 0).
Moreover, we ask that the deformed gauge theory preserves the Cauchy order of the
uncoupled model, which enforces the requirement that the interacting Lagrangian is
of maximum order equal to two in the spatiotemporal derivatives of the fields at each
order in the coupling constant.

If we make the notation S1 =
∫
dDxa, with a a local function, then the local

form of Eq. (43), which we have seen that controls the first-order deformation of the
solution to the master equation, becomes

sa= ∂µm
µ, gh(a) = 0, ε(a) = 0, (46)

for some local mµ, and it shows that the non-integrated density of the first-order de-
formation pertains to the local cohomology of s at ghost number zero, a ∈H0 (s|d),
where d denotes the exterior spatiotemporal differential. In order to analyze the above
equation, we develop a according to the antighost number

a=
I∑

k=0

ak, agh(ak) = k, gh(ak) = 0, ε(ak) = 0, (47)

and assume, without loss of generality, that the above decomposition stops at some
finite value of the antighost number, I . By taking into account the splitting (10) of
the BRST differential, Eq. (46) becomes equivalent to a tower of local equations,
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corresponding to the different decreasing values of the antighost number

γaI =∂µ
(I)
m
µ

, (48)

δaI +γaI−1 =∂µ
(I−1)
m

µ

, (49)

δak +γak−1 =∂µ
(k−1)
m

µ

, I−1≥ k ≥ 1, (50)

where
(

(k)
m
µ)

k=0,I

are some local currents with agh

(
(k)
m
µ)

= k. It can be proved

that we can replace Eq. (48) at strictly positive antighost numbers with

γaI = 0, agh(aI) = I > 0. (51)

In conclusion, under the assumption that I > 0, the representative of highest antighost
number from the non-integrated density of the first-order deformation can always
be taken to be γ-closed, such that Eq. (46) associated with the local form of the
first-order deformation is completely equivalent to the tower of equations given by
(49)–(50) and (51).

Now, we pass to the investigation of the solutions to Eqs. (51) and (49)–(50).
We have seen that the solution to Eq. (51) belongs to the cohomology of the exterior
longitudinal derivative, such that we need to compute H (γ) in order to construct
the component of highest antighost number from the first-order deformation. This
matter is solved with the help of definitions (19)–(24). In order to determine the
cohomology H(γ), we split the differential γ into two pieces

γ = γt +γr, (52)

where γt acts non-trivially only on the fields/ghosts from the (4,1) sector, while γr

does the same thing, but with respect to the (2,2) sector. From the above splitting it
follows that the nilpotency of γ is equivalent to the nilpotency and anticommutation
of its components

(γt)
2 = 0 = (γr)

2 , γtγr +γrγt = 0, (53)

so by Künneth’s formula we finally find the isomorphism

H(γ) =H(γt)⊗H(γr). (54)

It can be shown that H(γ) is generated on the one hand by Θ∗∆, Kµ1µ2µ3µ4µ5|α1α2

and Rµ1µ2µ3|α1α2α3
as well as by their spatiotemporal derivatives and, on the other

hand, by the ghosts Fµ1µ2µ3µ4µ5 ≡ ∂[µ1

(1)
η µ2µ3µ4µ5],

(4)
η µ1 , Cµν and ∂[µCνα], where
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Θ∗∆ denote all the antifields (from both sectors) and

Kµ1µ2µ3µ4µ5|α1α2
=∂[µ1 tµ2µ3µ4µ5]|[α2,α1], (55)

Rµ1µ2µ3|α1α2α3
=∂[µ1 rµ2µ3|[α1α2,α3] (56)

represent the curvature tensors of tµ1µ2µ3µ4|α1
and respectively rµ1µ2|α1α2

. We used
the standard notation f,µ = ∂µf . So, the most general, non-trivial representative from
H (γ) for the overall theory (1) reads as

aI = αI
([
Kµ1µ2µ3µ4µ5|α1α2

]
,
[
Rµ1µ2µ3|α1α2α3

]
,
[
Θ∗∆

])
×

×ωI
(
Fµ1µ2µ3µ4µ5 ,Cµν ,∂[µCνα],

(4)
η µ1

)
, (57)

where the notation f([q]) means that f depends on q and its derivatives up to a finite
order, while ωI denotes the elements of pure ghost number I (and antighost number
zero) of a basis in the space of polynomials in the corresponding ghosts and some
of their first-order derivatives. The objects αI (obviously non-trivial in H0 (γ)) were
taken to have a bounded number of derivatives, and therefore they are polynomials
in the antifields Θ∗∆, in the curvature tensors, as well as in their derivatives. Due
to their γ-closeness, they are called invariant polynomials. At zero antighost num-
ber, the invariant polynomials are polynomials in the curvature tensors and in their
derivatives.

Replacing the solution (57) into Eq. (49) and taking into account definitions
(19)–(24), we remark that a necessary (but not sufficient) condition for the exis-
tence of (non-trivial) solutions aI−1 is that the invariant polynomials αI are (non-
trivial) objects from the local cohomology of the Koszul–Tate differential H (δ|d) at
antighost number I > 0 and pure ghost number equal to zero, i.e.,

δαI = ∂µ
(I−1)

j

µ

, agh

(
(I−1)

j

µ
)

= I−1≥ 0, pgh

(
(I−1)

j

µ
)

= 0. (58)

The above notation is generic, in the sense that αI and
(I−1)

j

µ

may actually carry sup-
plementary Lorentz indices. Consequently, we need to investigate some of the main
properties of the local cohomology of the Koszul–Tate differential H (δ|d) at pure
ghost number zero and strictly positive antighost numbers in order to fully determine
the component aI of highest antighost number from the first-order deformation. As
the free model under study is a linear gauge theory of Cauchy order equal to five, the
general results from [2, 3] ensure that H (δ|d) (at pure ghost number zero) is trivial
at antighost numbers strictly greater than its Cauchy order

HI (δ|d) = 0, I > 5. (59)

Moreover, if the invariant polynomialαI , with agh(αI) = I ≥ 5, is trivial inHI (δ|d),
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then it can be taken to be trivial also in H inv
I (δ|d)(

αI = δbI+1 +∂µ
(I)
c
µ

, agh(αI) = I ≥ 5

)
⇒ αI = δβI+1 +∂µ

(I)
γ
µ

, (60)

with βI+1 and
(I)
γ
µ

invariant polynomials. (An element of H inv
I (δ|d) is defined via

an equation similar to (58), but with the corresponding current also an invariant poly-
nomial.) The result (60) can be proved like in the Appendix B, Theorem 3, from [5].
This is important since together with (59) ensures that the entire local cohomology
of the Koszul–Tate differential in the space of invariant polynomials (characteristic
cohomology) is trivial in antighost number strictly greater than five

H inv
I (δ|d) = 0, I > 5. (61)

Looking at the definitions (35)–(37) involving the transformed antifields (32) and
taking into account formulae (25)–(30) with respect to the (2,2) sector, we can orga-
nize the non-trivial representatives of HI (δ|d) (at pure ghost number equal to zero)
and H inv

I (δ|d) with I ≥ 2 in the following table.

Table 1

Non-trivial representatives spanning HI (δ|d) and H inv
I (δ|d)

agh HI (δ|d), H inv
I (δ|d)

I > 5 none

I = 5
(4)
η
∗µ1

I = 4
(3)

C ′
∗µ1||α

I = 3
(2)

C ′
∗µ1µ2||α

,C∗µ1µ2

I = 2
(1)

C ′
∗µ1µ2µ3||α

,C∗µ1µ2|α1

We remark that there is no non-trivial element in (HI (δ|d))I≥2 or
(
H inv
I (δ|d)

)
I≥2

that effectively involves the curvature tensors and/or their derivatives, and the same
stands for the quantities that are more than linear in the antifields and/or depend on
their derivatives. In contrast to the groups (HI (δ|d))I≥2 and

(
H inv
I (δ|d)

)
I≥2

, which
are finite-dimensional, the cohomology H1 (δ|d) at pure ghost number zero, that is
related to global symmetries and ordinary conservation laws, is infinite-dimensional
since the theory is free.

The previous results on H (δ|d) and H inv (δ|d) at strictly positive antighost
numbers are important because they control the obstructions to removing the an-
tifields from the first-order deformation. Indeed, due to (61), it follows that we can
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13 Consistent interactions between dual formulations of linearized gravity 481

successively eliminate all the pieces with I > 5 from the non-integrated density of the
first-order deformation by adding only trivial terms, so we can take, without loss of
non-trivial objects, the condition I ≤ 5 in the decomposition (47). The last represen-
tative is of the form (57), where the invariant polynomial is necessarily a non-trivial
object from H inv

I (δ|d) for I = 2,5 and respectively from H1 (δ|d) for I = 1.

6. BASIC RESULTS — IDENTIFICATION OF THE COUPLED MODEL

Now, we have at hand all the necessary ingredients for computing the general
form of the first-order deformation of the solution to the master equation as solution
to Eq. (46). In view of this, we decompose the first-order deformation like

a= at +ar +at−r, (62)

where at denotes the part responsible for the self-interactions of the field tµ1µ2µ3µ4|α1
,

ar is related to the self-interactions of the field rµ1µ2|α1α2
, and at−r signifies the com-

ponent that describes only the cross-couplings between tµ1µ2µ3µ4|α1
and rµ1µ2|α1α2

.
Obviously, Eq. (46) becomes equivalent with three equations, one for each compo-
nent

sat = ∂µm
µ
t , sar = ∂µm

µ
r , sat−r = ∂µm

µ
t−r. (63)

The solutions to the first two equations from (63) were investigated in [5] and res-
pectively [7] and read as

at = 0, ar = r. (64)

In order to solve the third equation from (63), we decompose at−r along the
antighost number like in (47) and stop, according to (61), at I = 4

at−r =
I∑

k=0

at−r
k , I ≤ 4, (65)

where at−r
I can be taken as solution to the equation γat−r

I = 0, and therefore it is
of the form (57). It is possible to show, following a line similar to that employed
in [17], that it possible to take I = 2 in (65). Under these circumstances, we can
completely determine the first-order deformation S1 and, using Eq. (44), also the
second-order deformation, S2. Moreover, it follows that we can safely take all the
remaining higher-order deformations to be trivial, Sm = 0,m> 2. We skip the proofs
and only list the main findings below.

The fully deformed solution to the master equation (41) ends at order two in
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the coupling constant and is given by

S̄ = S+λ

∫
d7x

[
εµ1...µ7

(1)
η
∗µ1...µ4

∂µ5Cµ6µ7

+
5

2
t∗µ1...µ4|αεµ1...µ7

(
∂µ5Cµ6µ7|α−

1

5
δµ5α ∂

[β C µ6µ7]|
β

)
+

5

48
tµ1...µ4|αε

µ1...µ7

(
∂λ∂µ5r

αλ
µ6µ7| +

2

5
δαµ5∂

λ∂µ6rµ7λ

)
+ r

]
+

5λ2

2

∫
d7x

[(
∂[µ1r

α1α2

µ2µ3]|

)
∂[µ1rµ2µ3]|

α1α2

−
(
∂[µ1r

µ1α1

µ2µ3]|

)
∂[ν1rµ2µ3]|

ν1α1

]
. (66)

We recall that r denotes the double trace of rµ1µ2|α1α2
. We observe that this solution

‘lives’ in a seven-dimensional spacetime. From (66) we read all the information on
the gauge structure of the coupled theory. The terms of antighost number zero in (66)
provide the Lagrangian action. They can be organized as

S̄L
[
tµ1µ2µ3µ4|α1

, rµ1µ2|α1α2

]
= SL

[
tµ1µ2µ3µ4|α1

, rµ1µ2|α1α2

]
+λ

∫
d7x

[
r+

5

48
tµ1...µ4|αε

µ1...µ7

(
∂λ∂µ5r

αλ
µ6µ7| +

2

5
δαµ5∂

λ∂µ6rµ7λ

)
+

5λ

2

((
∂[µ1r

α1α2

µ2µ3]|

)
∂[µ1rµ2µ3]|

α1α2

−
(
∂[µ1r

µ1α1

µ2µ3]|

)
∂[ν1rµ2µ3]|

ν1α1

)]
, (67)

where SL
[
tµ1µ2µ3µ4|α1

, rµ1µ2|α1α2

]
is the Lagrangian action appearing in (1) in D=

7. We observe that action (67) contains only mixing-component terms of order one
and two in the coupling constant. The piece of antighost number one appearing in
(66) gives the deformed gauge transformations in the form

δ̄χ,ε,ξtµ1µ2µ3µ4|α1
= ∂[µ1 χµ2µ3µ4]|α+∂[µ1 εµ2µ3µ4]α−4∂αεµ1µ2µ3µ4

+
5λ

2
εµ1...µ7

(
∂µ5ξµ6µ7|α−

1

5
δµ5α ∂

[β ξ
µ6µ7]|

β

)
, (68)

δξrµ1µ2|α1α2
= ∂µ1ξα1α2|µ2−∂µ2ξα1α2|µ1 +∂α1ξµ1µ2|α2

−∂α2ξµ1µ2|α1
. (69)

It is interesting to note that only the gauge transformations of the tensor field (4,1)
are modified during the deformation process. This is enforced at order one in the
coupling constant by a term linear in the first-order derivatives of the gauge parame-
ters from the (2,2) sector. From the terms of antighost number equal to two present
in (66) we learn that only the first-order reducibility functions are modified at order
one in the coupling constant, the others coinciding with the original ones. Since there
are no other terms of antighost number two in (66), it follows that the gauge algebra

RJP 58(Nos. 5-6), 469–484 (2013) (c) 2013-2013



15 Consistent interactions between dual formulations of linearized gravity 483

of the coupled model is unchanged by the deformation procedure, being the same
Abelian one like for the starting free theory. It is easy to see from (67)–(69) that if
we impose the PT-invariance at the level of the coupled model, then we obtain no
interactions (we must set λ= 0 in these formulae).

It is important to stress that the problem of obtaining consistent interactions
strongly depends on the spatiotemporal dimension. For instance, if one starts with
action (1) in D > 7, then one inexorably gets S̄ = S + λ

∫
dDx r, so no cross-

interaction term can be added to either the original Lagrangian or its gauge trans-
formations. Finally, we note that the results obtained here generalize our previous
findings from [17] on the interactions between a tensor with the mixed symmetry
(3,1) and one with the mixed symmetry of the Riemann tensor. Apart from the obvi-
ous similarities between the Lagrangian actions and gauge transformations, the most
interesting feature is that the first-order deformation ends in both cases at antighost
number two.

Acknowledgments. The results of this paper were presented at “The 8th General Conference of
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