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Some anisotropic locally rotationally symmetric (LRS) bulk viscous magnetized
Bianchi type-I string cosmological models are studied in context of Lyra’s geometry.
The modified Einstein’s field equations have been solved by taking a physically valu-
able condition that shear scalar (σ) is proportional to the scalar expansion (θ) which
leads to A = aBn. This general solution in terms of metric potential (B) describe the
characteristic of string Universe in presence of bulk viscosity and magnetic field. The
study reveals that the coefficient of viscosity decreases uniformly with cosmic expan-
sion during evolution of universe. In absence of magnetic field, the model can exit
during the a span of time and the energy conditions can be fulfilled for a finite interval
of time due to presence of bulk viscosity. It has been found that the displacement vec-
tor (β) is a decreasing function of time and it approaches to small positive value at late
time, which is collaborated with Halford (Aust. J. Phys. 23, 863, 1970) as well as recent
observations of SN Ia. The physical behavior of derived models are also described.
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1. INTRODUCTION

It is generally assumed that after the big bang, the universe may have undergone
a series of phase transitions as its temperature lowered down below some critical tem-
perature as predicted by grand unified theories [1-6]. It is belived that during phase
transition the symmetry of the universe is broken spontaneously which give rise to
topologically stable defects such as domain walls, strings and monopoles. In all these
three cosmological structures, cosmic strings have excited the most interesting con-
sequence [7] because they are believed to give rise to density perturbations which
lead to formation of galaxies [4,8]. The strings are free to vibrate and their different
vibrational modes present different types of particles carrying the force of gravita-
tion. The general relativistic treatment of strings has been initially given by Letelier
[9,10] and Stachel [11]. Letelier [10] obtained massive string cosmological mod-
els in Bianchi type-I and Kantowski-Sachs space-times. Benerjee et al. [12] have
investigated an axially symmetric Bianchi type-I string dust cosmological model in
presence and absence of magnetic field.
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2 Bulk viscous magnetized LRS Bianchi type-I string 65

On the other hand, introduction of viscosity in the cosmic fluid content plays
a significant role in analysis of many important physical aspects of the dynamics of
universe. Bulk viscosity is associated with Grand Unified theory (GUT) phase transi-
tion and string creation. At an early stage of the universe, when neutrino decoupling
occurs during radiation era and decoupling of radiation with matter takes place du-
ring recombination era, the matter behaves like a viscous fluid. The coefficient of
viscosity is known to decrease as the universe expands. The effect of viscosity on
the evolution of cosmological models and the role of viscosity in avoiding the initial
big bang singularity has been studied by several authors (Maartens [13], Misner [14],
Weinberg [15], Murphy [16]).

In addition, the occurrence of magnetic field on galactic scale is a well estab-
lished fact today and anisotropic magnetic field models have significant contribution
in the evolution of galaxies and stellar objects. Zeldovich et al. [17] have pointed out
the importance of magnetic field in various astronomical phenomena. Also, Harrison
[18] has suggested that magnetic field could have a cosmological origin. Melvin [19]
has described that during the evolution of Universe, the matter is in highly ionized
state and due to smooth coupling with field it form neutral matter as a result of Uni-
verse expansion. Strong magnetic field can be created due to adiabatic compression
in clusters of galaxies. Large-scale magnetic field gives rise to anisotropies in the
universe. Therefore, the presence of magnetic field in anisotropic string universe is
not unrealistic. Bali and Upadhaya [20] have presented LRS Bianchi type-I string
dust magnetized cosmological models in general relativity. Wang [21,22] has inves-
tigated LRS Bianchi I string cosmological models in general relativity in presence of
bulk viscosity and electromagnetic field where constant coefficient of bulk viscosity
is considered.

One of the most intriguing modifications of general relativity is that proposed
by Weyl [23], invented to unify gravitation and electromagnetism by means of funda-
mental changes in Riemannian geometry. Unfortunately the Weyl theory suffers from
non integrability of length and is, therefore physically unacceptable. However being
interesting from mathematical point of view, it may still have the germs of a future
fruitful theory. Later, Lyra [24] modified Riemannian geometry and removed non-
integrability of length transfer by introducing a gauge function into the structure-less
manifold as a result of which a displacement field arise naturally. Subsequently, Sen
et al. [25,26] proposed a new scalar tensor theory of gravitation. They constructed
an analog of the Einstein Field Equation based on Lyra’s geometry given by equa-
tion (8). Halford [27, 28] showed that the scalar-tensor treatment based on Lyra’s
geometry predicts some effects within observational limits, as in Einstein’s theory.

In this paper, we present some bulk viscous LRS Bianchi type-I string magne-
tized cosmological models in frame work of Lyra’s geometry. The magnetic field is
due to an electric current produced along x-axis with infinite electrical conductivity.
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2. METRIC AND FIELD EQUATIONS

We consider the LRS spatially homogeneous Bianchi type I metric of the form

ds2 =−dt2+A2(t)dx2+B2(t)(dy2+dz2) (1)

where A and B are the functions of time t alone.
The energy momentum tensor for a cloud of string with magnetic field in co-moving
coordinate system is

Tij = ρuiuj −λxixj − ζθ(uiuj −gij)+Eij (2)

where the vector ui describes the cloud four-velocity and xi represents a direction of
anisotropy, i.e. the string, satisfy the relations

uiui =−xixi =−1 uixi = 0 (3)

and in comoving coordinate system,

T 1
1 = T 2

2 = 0, T 3
3 = λ, T 4

4 = ρ, T i
j = 0 for i 6= j. (4)

Here ρ is the rest energy of the cloud of strings with massive particles attached to
them. It is given by ρ= ρp+λ, ρp being the rest energy density of particles attached
to the strings and λ the density of tension that characterizes the strings. The energy
momentum for magnetic field is

Eij =
1

4π

(
FikFjlg

kl− 1

4
gijF

klFkl

)
, (5)

where Fij is the electromagnetic field tensor which satisfies the Maxwell’s equations

F[ij;k] = 0,
(
F ij√−g

)
;j = 0. (6)

In comoving coordinates, the incident magnetic field is taken along x-axis, with the
help of Maxwell equations (6), the only non vanishing component of Fij is

F23 = Constant.

The general equation equation of state can be considered as

ρ= αλ. (7)

The field equation in the normal gauge for Lyra’s manifold, as obtained by Sen are

Rij −
1

2
gijR+

3

2
φiφj −

3

4
gijφkφ

k =−8πGTij , (8)

where φi is the displacement field vector defined as

φi = (0,0,0,β(t)) (9)
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and other symbols have their usual meaning as in Riemannian geometry. For metric
(1), the field equation (8) with the equations (2)-(7) take the form

2
ȦḂ

AB
+

Ḃ2

B2
= αλ+

F 2
23

8πB4
+

3

4
β2 (10)

2
B̈

B
+

Ḃ2

B2
= λ+ ζθ+

F 2
23

8πB4
− 3

4
β2 (11)

Ä

A
+

B̈

B
+

ȦḂ

AB
= ζθ− F 2

23

8πB4
− 3

4
β2 (12)

The quantities with dots overhead refer to their partial derivatives with respect to time
co-ordinate and we choose units such that, 8πG= 1.

3. SOLUTION IN PRESENCE OF BULK VISCOSITY AND MAGNETIC FIELD

The research on exact solutions is based on some physically reasonable re-
strictions used to simplify the Einstein equations. Equations (10)-(12) are three in-
dependent equations connecting five unknowns (A,B,λ,ζ and β), for the complete
determinacy of the system, we need two extra conditions. Firstly, we assume that
the coefficient of bulk viscosity (ζ) is inversely proportional to the expansion θ. This
condition leads to

ζθ =K(constant) (13)

and secondly, we consider the expansion θ is proportional to the shear σ. This con-
dition leads to

A= aBn, (14)

where a and n > 0 are constants.
From equations (10)-(12), with the help of equations (13) and (14), eliminating λ and
β, we have

B̈

B
+µ

Ḃ2

B2
= νK− lM

B4
(15)

where µ= [(n+1)2−α(1−n2)]
[α(1−n)−(n+1)] ,ν = 2α

[α(1−n)−(n+1)] , l =
(α+1)

[α(1−n)−(n+1)] and M =
F 2
23
8π

To solve equation (15), let us assume that Ḃ = f(B). Thus, B̈ = f df
dB . Accordingly

equation (15) leads to

2f
df

dB
+2µ

f2

B
= 2νKB−2lMB−3 (16)

This is a first order linear differential equation which can be written as

d

dB
(f2B2µ) = 2νKB2µ+1−2lMB2µ−3 (17)
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On integrating equation (17), we obtain

t=

∫
1√[

m
B2µ + νKB2

(µ+1) −
lM

(µ−1)B2

]dB (18)

where m is constant of integration.
For this solution, the geometry of the universe is described by the line-element

ds2 =−
[

m

B2µ
+

νKB2

(µ+1)
− lM

(µ−1)B2

]−1

dB2+a2B2ndx2+B2(dy2+dz2) (19)

Under suitable transformation of coordinates, the metric (19) can be reduced to the
form

ds2 =−
[

m

T 2µ
+

νKT 2

(µ+1)
− lM

(µ−1)T 2

]−1

dT 2+a2T 2ndX2+T 2(dY 2+dZ2) (20)

where µ 6=±1 and the cosmic scale T =B can be determined by equation (18).

3.1. SOME PHYSICAL AND GEOMETRIC FEATURES

The expression for the energy density (ρ), the string tension density (λ), particle
density (ρp), the coefficient of bulk viscosity (ζ) and the displacement vector (β) are
given by

ρ=

[
2mα[(n+1)−µ]

(1+α)
−M

(
2lα[(n+1)−µ]

(1+α)(1+µ)
+2(1+ l)

)
T−2

]
T−2

+K

[
2να[n+1−µ]

(1+α)(1+µ)
+(2ν−1)

]
(21)

λ=
1

α
ρ (22)

ρp = ρ−λ= (1− 1

α
)ρ (23)

ζ =
K

(n+2)

[
m

T 2(µ+1)
+

νK

(µ+1)
− lM

(µ−1)T 4

]− 1
2

(24)

β =
2√
3

[
m[µ(n+1)−n2]T−2(µ+1)+

(
lM(n+1)− [µ(n+1)−n2]

(µ−1)

)
T−4

+K

(
ν[µ(n+1−n2)]

(µ+1)
+1

)] 1
2

. (25)

The spatial volume (V ) of Universe is given by

V = aT (n+2) (26)
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The spatial volume V → 0 when T → 0, and V →∞ when T →∞.
The physical quantities expansion scalar (θ), and shear scalar (σ) are given by

θ = ui;i = (n+2)

[
m

T 2(µ+1)
+

νK

(µ+1)
− lM

(µ−1)T 4

] 1
2

(27)

σ2 =
1

2
σijσ

ij =
(n−1)2

3

[
m

T 2(µ+1)
+

νK

(µ+1)
− lM

(µ−1)T 4

]
, (28)

hence

lim
T→∞

(
σ2

θ2

)
=

(n−1)2

3(n+2)2
= constant. (29)

Thus the model does not approach isotropy for large value of T.
The Hubble parameter (H) and deceleration parameter (q) are given by

H =
(n+2)

3

[
m

T 2(µ+1)
+

νK

(µ+1)
− lM

(µ−1)T 4

] 1
2

(30)

q=− 3

(n+2)

[(
νKT 2− lM

T 2

)(
m

T 2µ
+

νKT 2

(µ+1)
− lM

(µ−1)T 2

)−1

+
[n− (1+3µ)]

3

]
(31)
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(a) The plot of ‘β’ vs. ‘T ’ for model-20 with
parameters m= 5.5, n= 0.5, µ= 0.7, M = 0.5,

l = 20, ν = 50, and K = 40.
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(b) The plot ‘q’ vs. ‘T ’ for model-20 with
parameters m= 0.5, n= 25, µ= 0.5, ν = 50

and K = 1.5.

Fig. 1 – The plots of displacement vector β and deceleration parameter ‘q’ vs. cosmic time T for model
(20).

It is observed from figure 1(a) that the displacement vector β(t) has a very
large value at beginning and reduces fast during evolution of Universe analogous to
cosmological constant Λ. The negative value of deceleration parameter ‘q’ implies
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that our model (20) of universe is accelerating. Figure 1(b) shows that the value of q
lies in the range −1≤ q < 0 which is consistent with current observations [30-37].

3.2. DISCUSSION

The space-time (20) represents the string magnetized LRS Bianchi type-I Uni-
verse with bulk viscosity. From equation (21), we observe that the energy condition
ρ≥ 0 given by Hawking and Ellis [29] leads to[

K

(
ν

(1+µ)
+

(1+α)(2ν−1)

2α[n+1−µ]

)
+

m

T 2

]
T 4 ≥M

[
l

(1+µ)
+

(1+α)(1+ l)

α[n+1−µ]

]
(32)

Equations (22) and (23) shows that when α≥ 1, the particle density ρp ≥ 0 and string
tension density λ≥ 0, however, when α < 0, ρp > 0 and λ < 0. The energy density

ρ is infinite at T = 0, and ρ→K
[
2να[n+1−µ]
(1+α)(1+µ) +(2ν−1)

]
when T →∞, provided

n+1 > µ and 2ν − 1 > 0. The spatial volume V tends to zero when T → 0 and
V →∞ when T →∞. The scalar expansion θ is infinite at T = 0, and θ→ (n+2)]νK

(µ+1)
when T →∞, provided µ+1> 0. The figure 1(a) shows that the displacement vector
β is a decreasing function of cosmic time analogous to cosmological constant Λ.

Since lim
T→∞

(σ
θ

)
= constant, the model does not approach isotropy for large

value of T . Further, when α > 2 or α < 0, we have ρp
|λ| > 1, therefore in this case the

massive strings dominate the universe in the process of evolution. However, when
1 < α < 2, we have ρp

|λ| < 1 and in this case the strings dominate over the particles.
Recent observations show that the value of q is confined in the range −1 ≤ q < 0
and the present day Universe is undergoing an accelerated expansion (Perlmutter et
al. [30-32], Riess et al. [33, 34], Tonry et al. [35], John [36] and Knop et al. [37]).
Figure 1(b) shows that the value of q lies in the range −1≤ q < 0 which is consistent
with current observations and its negative value indicates that our proposed model
(20) is accelerating. In our derived LRS Bianchi type-I homogeneous model (20)
isotropy is achieved for n= 1, A≈B = T .

3.3. BULK VISCOUS MODEL IN ABSENCE OF MAGNETIC FIELD

In absence of magnetic field (M = 0), we obtain string cosmological model
with bulk viscosity and in this case metric (20) reduces to the form

ds2 =−
[

m

T 2µ
+

νKT 2

(µ+1)

]−1

dT 2+a2T 2ndX2+T 2(dY 2+dZ2). (33)

The expression for the energy density (ρ), the string tension density (λ), particle
density (ρp), the coefficient of bulk viscosity (ζ) and the displacement vector (β) are
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given by

ρ=

[
2mα[(n+1)−µ]

(1+α)
T−2+K

(
2να[n+1−µ]

(1+α)(1+µ)
+(2ν−1)

)]
(34)

λ=
1

α
ρ (35)

ρp = ρ−λ= (1− 1

α
)ρ (36)

ζ =
K

(n+2)

[
m

T 2(µ+1)
+

νK

(µ+1)

]− 1
2

(37)

β =
2√
3

[
m[µ(n+1)−n2]T−2(µ+1)+

[µ(n+1)−n2]

(µ−1)
T−4

+K

(
ν[µ(n+1−n2)]

(µ+1)
+1

)] 1
2

. (38)

The physical quantities expansion scalar (θ) and shear scalar (σ) are given by

θ = ui;i = (n+2)

[
m

T 2(µ+1)
+

νK

(µ+1)

] 1
2

(39)

σ2 =
1

2
σijσ

ij =
(n−1)2

3

[
m

T 2(µ+1)
+

νK

(µ+1)

]
(40)

hence

lim
T→∞

(
σ2

θ2

)
=

(n−1)2

3(n+2)2
= constant. (41)

Thus the model does not approach isotropy.
The Hubble parameter (H) and deceleration parameter (q) are given by

H =
(n+2)

3

[
m

T 2(µ+1)
+

νK

(µ+1)

] 1
2

(42)

q =− 3

(n+2)

[
νKT 2

(
m

T 2µ
+

νKT 2

(µ+1)

)−1

+
[n− (1+3µ)]

3

]
(43)

The displacement vector β(t) is large at beginning of Universe and reduces
fast during its evolution analogous to cosmological constant Λ as shown in figure
2(a). Figure 2(b) shows that the value of q confined in the range −1 ≤ q < 0 which
is consistent with current observations [30-37] and this negative value indicates that
our proposed model (33) is accelerating.
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(a) The plot of ‘β’ vs. ‘T ’ for model-33 with
parameters m= 5.5, α= 1.5, n= 1.6, µ= 2.2,

ν = 40 and K = 50.
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(b) The plot ‘q’ vs. ‘T ’ for model-33 with
parameters m= 10.5, n= 20, µ= 3.5, ν = 35

and K = 2.5.
Fig. 2 – The plots of displacement vector β and deceleration parameter ‘q’ vs. cosmic time T for
model-33.

3.4. DISCUSSION

The space-time (33) represents the bulk viscous LRS Bianchi type-I string cos-
mological model in absence of magnetic field. We observe from equation (34) that
the energy condition ρ≥ 0 leads to

−K

[
ν

(1+µ)
+

(1+α)(2ν−1)

2mα[(n+1)−µ]

]
≤ T−2≤K

[
ν

(1+µ)
+

(1+α)(2ν−1)

2mα[(n+1)−µ]

]
. (44)

The model (33) can exit during the span of time given by (44). The energy condition
can be fulfill for a finite interval of time due to presence of bulk viscosity. Equations
(35) and (36) shows that when α ≥ 1, the particle density ρp ≥ 0 and string tension
density λ≥ 0, however, ρp > 0 and λ< 0 when α< 0. The energy density ρ is infinite

at T = 0, and ρ→K
[
2να[n+1−µ]
(1+α)(1+µ) +(2ν−1)

]
when T →∞. The spatial volume V

tends to zero when T → 0 and V → ∞ when T → ∞. The scalar expansion θ is
infinite at T = 0, and θ →

[
(n+2)]νK
(µ+1)

]
when T →∞, provided µ+1> 0.

Since lim
T→∞

(σ
θ

)
= constant the model does not approach isotropy for large

value of T . Further, when 1 < α < 2, we have ρp
|λ| < 1 and in this case the strings

dominate over the particles. However, when α> 2 or α< 0 we have ρp
|λ| > 1, therefore

the massive strings dominate the universe in the process of evolution. This model
has singularity at T = 0. The figure 2(a) shows that the displacement vector β is a
decreasing function of cosmic time (T ) which is analogous to the observed values
of cosmological constant Λ. The current observations [30-37] show that the value of
(q) is confined in the range −1 ≤ q < 0 and the present day Universe is undergoing
an accelerated expansion. Figure 2(b) shows that the value of q lies in the range
−1 ≤ q < 0 which is consistent with current observations. The negative value ‘q’
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10 Bulk viscous magnetized LRS Bianchi type-I string 73

represents that our proposed model (33) is accelerating.

4. CONCLUDING REMARKS

The present paper deals with the study of some LRS Bianchi type I string cos-
mological models in presence and absence of bulk viscosity and electromagnetic field
in frame work of Lyra’s manifold. In section 3, The modified Einstein’s field equa-
tions have been solved for a general case in terms of a scale factor (T ), describing
the behavior of string Universe in presence of bulk viscosity and magnetic field. The
main features of the work are as follows:

• The present study reveals that the coefficient of viscosity decreases with expan-
sion of Universe and become insignificant at a late time. The bulk viscous model
can exist in a span of times discussed in section-3.

• The presence of magnetic field affect energy density (ρ), strings particle density
(ρp), tension density (λ), coefficient of bulk viscosity (ζ), displacement vector (β)
and expansion as well as acceleration of proposed Universe. During the evolution
of Universe, highly ionized matter smoothly coupled with fields to form neutral
matter which causes the expansion of Universe.

• When 1< α < 2, we have ρp
|λ| < 1, and in this case, the strings dominate over the

particles. However, when α > 2 or α < 0 we have ρp
|λ| > 1, therefore the massive

strings dominate the Universe in the process of evolution.

• It all the singular models, the displacement vector β is large at beginning of the
Universe and reduces fast during its evolution [see Figs. 1(a), 2(a)]. The ob-
served value of β is analogous to the value of cosmological constant Λ which is
collaborated with Halford as well as recent observations of SN Ia.

• In all the deterministic models, σ
θ = constant implies that the models do not

approach isotropy.

• Our Universe is isotropic and homogeneous at present and well described by FRW
models. For n= 1, A≈B, therefore isotropy is achieved in our derived homoge-
neous LRS Bianchi type-I models.

REFERENCES

1. A.E. Everett, Phys. Rev. 24, 858 (1981).
2. T.W.B. Kibble, J. Phys. A 9, 1387 (1976).
3. T.W.B. Kibble, Phys. Rep. 67, 183 (1980).
4. A. Vilenkin, Phys. Rev. D 24, 2082 (1981).

RJP 58(Nos. 1-2), 64–74 (2013) (c) 2013-2013



74 Vineet K. Yadav, Lallan Yadav 11

5. Ya.B. Zel’dovich, I.Yu. Kobzarev and L.B. Okun, Zh. Eksp. Teor. Fiz. 67, 3 (1975).
6. Ya.B. Zel’dovich, I.Yu. Kobzarev and L.B. Okun, Sov. Phys.-JETP 40, 1 (1975).
7. A. Vilenkin, Phy. Rep. 121, 263 (1985).
8. Ya.B. Zel’dovich, Mon. Mot. R. Astron. Soc. 192, 663 (1980).
9. P.S. Letelier, Phys. Rev. D 20, 1249 (1979).

10. P.S. Letelier, Phys. Rev. D 28, 2414 (1983).
11. J. Stachel, Phys. Rev. D 21, 2171 (1980).
12. A. Banerjee, A.K. Sanyal and S. Chakraborty, Pramana-J. Phys. 34, 1 (1990).
13. R. Maartens, Class. Quantum Gravity 12, 1455 (1995).
14. C.W. Misner, Nature 214, 40 (1967).
15. S. Wienberg, Astrophys. J. 168, 175 (1971).
16. J.L. Murphy, Phys, Rev. D 8, 4231 (1973).
17. Ya.B. Zeldovich, A.A. Ruzmainkin and D.D. Sokoloff, Magnetic field in Astrophysics (Gordon and

Breach, New York, 1983).
18. E.R. Harrison, Phys. Rev. Lett. 30, 188 (1973).
19. M.A. Melvin, Ann. New York Acad. Sci. 262, 253 (1975).
20. R. Bali and R.D. Upadhaya, Astrophys. Space Sci. 283, 97 (2003).
21. X.X. Wang, Chin. Phys. Lett. 26, 109804 (2009).
22. X.X. Wang, Chin. Phys. Lett. 293, 433 (2004).
23. H. Weyl, Sitz. ber. Preuss Akad. Wiss., 465 (1918).
24. G. Lyra, Math. Z. 54, 52 (1951).
25. D.K. Sen, Z. Phys. 149, 311 (1957).
26. D.K. Sen and K.A. Dunn, J. Math. Phys. 12, 578 (1971).
27. W.D. Halford, Austr. J. Phys. 23, 863 (1970).
28. W.D. Halford, J. Math. Phys. 13, 1699 (1972).
29. S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time (Cambridge Univ. Press,

p.91, 1973).
30. S. Perlmutter, et al., Astrophys. J. 43, 565 (1997).
31. S. Perlmutter, et al., Nature (Landon) 391, 51 (1998).
32. S. Perlmutter, et al., Astrophys. J. 517, 565 (1999).
33. A.G. Riess, et al., Astron. J. 116, 1009 (1998).
34. A.G. Riess, et al., Astron. J. 607, 665 (2004).
35. J.L. Tonry, et al., Astrophys. J. 594, 1 (2003).
36. M.V. John, Astrophys. J. 614, 1 (2004).
37. R.A. Knop, et al. Astrophys. J. 598, 102 (2003).

RJP 58(Nos. 1-2), 64–74 (2013) (c) 2013-2013


