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We show how the exponential fitting technique can be used for building up
quadrature rules of prerequisite forms and with constant coefficients. This includes
forms where not only the values of the integrand are accepted in input, as in standard
formulas, but also the values of some derivatives of the integrand. The new rules are
of substantial help in practical computations because quite often such extra data are
available from the previous steps of the computation chain but they are ignored when
evaluating integrals. We also give a numerical illustration which clearly demonstrates
the accuracy gain to be obtained from the new rules.

1. INTRODUCTION

The exponential fitting (ef for short) is a powerful technique for the construc-
tion of approximation formulas for operations on functions with special behavior, in
particular when these are oscillatory functions. The following simple examples are
of help for understanding the object of this technique.
First derivative. The simplest approximation for this operation is the popular central
difference formula

f ′(X)≈ 1

2h
[f(X+h)−f(X−h)], (1)

which gives good results when f has a slow, smooth variation on [X −h,X +h].
Much less known is the fact that when f is an oscillatory function of form

f(x) = f1(x)sin(ωx) +f2(x)cos(ωx) (2)

with smooth f1 and f2, then the slightly modified formula

f ′(X)≈ θ

2hsin(θ)
[f(X+h)−f(X−h)], where θ = ωh, (3)

becomes appropriate; it tends to the former when θ→ 0.
Second derivative. Three-point approximation

f ′′(X)≈ 1

h2
{a1[f(X+h) +f(X−h)] +a2f(X)}, (4)

(c) RJP 57(Nos. 1-2) 275–287 2012Rom. Journ. Phys., Vol. 57, Nos. 1-2, P. 275–287, Bucharest, 2012



276 L. Gr. Ixaru 2

has the constant coefficients a1 = 1, a2 =−2 for the classical case, and the θ depen-
dent

a1(θ) =
θ

sinθ
and a2(θ) =

θ(sinθ−2cosθ)

sinθ
for oscillatory functions of form (2).
Quadrature. Trapezium rule∫ X+h

X−h
f(z)dz ≈ h[a1f(X+h) +a2f(X−h)], (5)

has the classical coefficients a1 = a2 = 1 but

a1(θ) = a2(θ) =
sin(θ)

θ cos(θ)
,

for functions of form (2).
Interpolation. Let f(X ± h) be given and we want to interpolate at some x′ ∈

(X−h, X+h) with the formula

f(x′)≈ a−f(X−h) +a+f(X+h). (6)

In the classical case (usual linear interpolation) the coefficients a± depend only on
x′. With t = (x′−X)/h these are a±(x′) = (1± t)/2 but for treating oscillatory
functions they depend also on θ,

a±(x′, θ) =
sin[(1± t)θ]

sin(2θ)
.

These were only a few simple examples but the literature is very vast, of several
hundred papers. A short selection is [1]- [34], and a book is also available, [35].
Interesting enough, the procedure was seen for long as one for building up suited
algorithms for differential equations, in particular for the Schrödinger equation, and
this explains why the vast majority of papers are concerned with this case. The
fact that the procedure is applicable for other numerical operations (differentiation,
quadrature, interpolation etc.) became clear only later on, [5], thus shaping up a
direction of increasing concern in the last years.
The expression ’exponential fitting’ indicates that the procedure has a larger area
than dealing with oscillatory functions: in general it covers the cases where f is a
linear combination of exponential functions with different frequencies. Expression
(2) represents only some possible linear combination of exponential functions: only
two imaginary frequencies ±iω are involved in this case. (Notice that in ef the term
frequency has a different meaning than that usually adopted in physics; it represents
the factor of x in the exponent). Still, in practice this was the case that has been the
most extensively exploited up to now due to the tremendous large variety of problems
where oscillatory functions are involved; think, for example, of phenomena involving
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3 Context-dependent quadrature rules for scientific codes 277

oscillations, rotations, vibrations, wave propagation, behavior of quantum particles
etc.

In this paper we want to exploit this procedure in a special context, which does
not actually fit the standard purpose of the exponential fitting procedure. We are ac-
tually interested in explaining how the procedure can be used as a tool for obtaining
approximation formulas of the classical type, that is when the involved frequencies
vanish. Of course, in this way we reobtain known formulas but the advantage is that
the procedure is much simpler and direct than the standard one. The knowledge of
this procedure has actually a very large area of potential applications and the most
important of these is that it allows approaching the case when numerical formulas
with prerequisite forms are demanded.
To understand the importance of the demand for prerequisite forms we focus on the
quadrature case. When approaching problems in natural sciences (physics, chem-
istry, biology etc.) a succession of numerical operations has to be carried out, where
the output from some step is used as input in the next step. For example, let us as-
sume that at some moment we have to solve a second order differential equation, let
this be y′′ = f(x,y) on [a,b], and just after that we are interested in the evaluation
of the integral of y over this interval. If the differential equation is solved by the
Runge-Kutta method, then we get not only the values of the solution y at the mesh
points but also of its first and second derivative; the latter results directly by comput-
ing the right-hand side of the differential equation. If, alternatively, the equation is
solved by a finite difference scheme, then we obtain the values of y and y′′ but not
those of y′. As for the calculation of the integral, plenty of versions are presented
in the standard literature, see [36] for example, but, surprisingly enough, these typ-
ically use only the values of the integrand. Formulas which use also the values of
sets of successive derivatives appeared only recently, [16–18, 22], while formulas in
which some of these are missing are nearly ignored although it is clear that all such
extended formulas are potentially more accurate whereas they exploit richer input
information than that contained in the integrand alone. Expressed in other words, the
new formulas (we call them context-dependent) provide an advantageous alternative
to the standard formulas which, for comparable accuracy, impose repeating the whole
computation on finer partitions, thus increasing the computational effort.

2. BUILDING UP CONTEXT-DEPENDENT QUADRATURE RULES

As said, for chains of numerical operations it is advantageous to use approx-
imation formulas which take into account as much information as is available from
the previous steps of the chain. In the following we take the case of quadrature for-
mulas which make use not only of the values of the integrand but also of its first and
second derivative.
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278 L. Gr. Ixaru 4

To fix the things we consider the interval [−h, h], a partition of this by the mesh
points x1 =−h, x2 = 0, x3 = h, and a quadrature rule of the announced form. This
is

Q[y] =

∫ h

−h
y(z)dz ≈

2∑
k=0

hk+1[ak1y
(k)(−h) +ak2y

(k)(0) +ak3y
(k)(h)] , (7)

where ak1, ak2, ak3 (k = 0,1,2) are coefficients to be determined in order to get the
closest approximation. The choice [−h,h] of the interval represents no restriction at
all. The interval can be well taken in its general form [X−h,X+h] but the chosen
form makes the notations simpler. The final values of the coefficients are unchanged,
of course. The error of this rule is the difference between the exact value of the
integral and the approximation of this,

E[h,a; y] =

∫ h

−h
y(z)dz−

2∑
k=0

hk+1[ak1y
(k)(−h) +ak2y

(k)(0) +ak3y
(k)(h)]

where the parameters h and a (this collects all nine coefficients) are explicitly men-
tioned.
The problem consists in the determination of the coefficients such that the error is
minimal in a certain sense. Various particular forms are of interest in terms of the
available data. For example, if only the values of y at the three points are known we
have to impose from the very beginning that all coefficients of the derivatives equal
zero, i.e. only a01,a02 and a03 have to be determined.
Our investigation, inspired from the exponential fitting procedure, follows three steps:
1. Find the expressions of E[h,a; y] for y(x) = xn, n= 0,1,2,3, · · · .
2. Evaluate the values of the coefficients such that E[h,a; y] = 0 for as many succes-
sive y(x) = xn, n= 0,1,2, . . ., as possible; it is assumed that this is actually the way
which leads to coefficients which ensure the minimal error for the considered rule.
3. Determine the Lagrange-like expression of the error.
Step 1 regards the general form (7) while steps 2-3 will treat each particular case
separately.

We have the following

Lemma 1 The expressions of E[h,a; y] for y(x) = xn, n = 0,1,2,3, · · · are of the
form

E[h,a; xn] = hn+1En(a) , (8)
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5 Context-dependent quadrature rules for scientific codes 279

where En(a), called reduced moments, are

E0(a)=2− (a01 +a02 +a03),

E1(a)=−(−a01 +a03 +a11 +a12 +a13),

E2(a)=
2

3
− [a01 +a03 + 2(−a11 +a13 +a21 +a22 +a23)],

En(a)=−[−a01 +a03 +n(a11 +a13) +n(n−1)(−a21 +a23)],odd n≥3,

En(a)=
2

n+ 1
− [a01 +a03 +n(−a11 +a13) +n(n−1)(a21 +a23)],even n≥4.

(9)

Proof: Elementary evaluations on y(x) = xn give:

y(h) = (−1)ny(−h) = hn, y(0) = δn0,

y′(h) = (−1)n−1y′(−h) = nhn−1, y′(0) = δn1,

y′′(h) = (−1)ny′′(−h) = n(n−1)hn−2, y′′(0) = 2δn2,

for all n= 0,1,2, . . ., and∫ h

−h
y(z)dz =


2

n+ 1
hn+1 for even n,

0 for odd n.

If these are introduced in (2) the expressions under eq.(9) result directly.
Q. E. D.

Remark: The knowledge of the expressions of the moments plays a central role in
the procedure. First, it allows determining the coefficients by equating to zero as
many successive moments as needed and then solving the resulting algebraic system.
Second, after the coefficients are determined, the next coming moments have to be
calculated and, if Em(a) is the first nonvanishing coefficient, then the Lagrange-like
error formula is

E[h,a; y] =
1

m!
Em(a)hm+1y(m)(η), (10)

where η ∈ (−h,h). If the interval is [X − h,X + h] then the error has the same
form but η ∈ (X −h,X +h). For the general expression of the error for ef-based
approximation formulas see [21].

In the following we examine two families of quadrature rules of the form (7).
These are the two-point rules, denoted Q2

s, where only data at the mesh points ±h
are accepted, and three-point rules, denoted Q3

s, where data at all three mesh points
are accepted. Index s = 1,2,3,4 identifies versions in the corresponding family in
terms of what are actually the data accepted for input:

- Versions Q2
1 and Q3

1. Accepted input data: y. These are the trapezium and Simpson
rule, respectively.
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280 L. Gr. Ixaru 6

- Versions Q2
2 and Q3

2. Accepted input data: y and y′.

- Versions Q2
3 and Q3

3. Accepted input data: y and y′′.

- Versions Q2
4 and Q3

4. Accepted input data: y, y′ and y′′.

3. TWO-POINT RULES

For the trapezium rule Q2
1 the following result is well-known, e.g. [36] :

Theorem 1 The coefficients and the Lagrange-like expression of the error for ver-
sion Q2

1 are

a01 = a03 = 1 and E[h,a; y] =−2

3
h3y′′(η) ,

for some η ∈ (−h, h).
Proof: This result can be proved in various ways but here we reconsider the proof
again mainly as a first and simple illustration on how the ef-based procedure works.
Since only the values y(±h) are accepted, all coefficients in eq.(7) are set to zero
except for a01 and a03 which have to be determined.
We now cover the above mentioned steps 2-3.
Step 2. Since the number of coefficients to be determined is 2 the same is the number
of the involved successive reduced moments. For brevity reasons hereinafter the
reduced moments will be called simply moments and the parameter a will be omitted
when they are written.
The first two moments are E0 = 2−(a01 +a03), E1 =−(−a01 +a03), and the linear
system E0 = E1 = 0 has the solution a01 = a03 = 1.
Step 3. With these coefficients the first nonvanishing moment is E2 =−4/3, that is,
m= 2. Error expression (10) results directly in the announced form.

Q. E. D.
The following theorem covers the three extensions of the trapezium rule:
Theorem 2 The extended trapezium rules and the Lagrange-like expression of their
errors are as follows:

- Version Q2
2 :

Q[y]≈ h[y(−h) +y(h)] +
1

3
h2[y′(−h)−y′(h)],

E[h,a; y] =
2

45
h5y(4)(η);

(11)
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7 Context-dependent quadrature rules for scientific codes 281

- Version Q2
3 :

Q[y]≈ h[y(−h) +y(h)]− 1

3
h3[y′′(−h) +y′′(h)],

E[h,a; y] =
4

15
h5y(4)(η);

(12)

- Version Q2
4 :

Q[y]≈ h[y(−h) +y(h)] +
2

5
h2[y′(−h)−y′(h)] +

1

15
h3[y′′(−h) +y′′(h)],

E[h,a; y] =− 2

1575
h7y(6)(η),

(13)

for some η ∈ (−h,h). The value of η may vary from one version to another.
Remark: The coefficients of the rules Q2

2 and Q2
4 are known, [18], but the Lagrange-

like expression of their error and rule Q2
3 are new.

Proof: This follows the same pattern as for the previous theorem.
VersionQ2

2. Here four parameters have to be determined: a01, a03, a11 and a13.
The first four moments are E0 = 2− (a01 +a03), E1 = −(−a01 +a03 +a11 +a13),
E2 = 2/3− [a01 + a03 + 2(−a11 + a13)], E3 = −[−a01 + a03 + 3(a11 + a13)], and
the algebraic system E0 = E1 = E2 = E3 = 0 has the solution

a01 = a03 = 1, a11 =−a13 =
1

3
,

as in (11). An extra check gives E4 = 16/15 6= 0 and therefore m= 4.
Version Q2

3. Four parameters have to be determined also in this case: a01,
a03, a21 and a23. The first four moments are E0 = 2− (a01 + a03), as before, but
E1 =−(−a01 +a03), E2 = 2/3− [a01 +a03 +2(a21 +a23)], E3 =−[−a01 +a03 +
6(−a21 +a23)]. The algebraic system E0 = E1 = E2 = E3 = 0 has the solution

a01 = a03 = 1, a21 = a23 =−1

3
.

With these we get E4 = 32/5 6= 0 and therefore m= 4.
Version Q2

4. Six parameters have to be determined: a01, a03, a11, a13, a21
and a23 and then the same number of successive moments have to be considered:
E0 = 2− (a01 + a03), E1 = −(−a01 + a03 + a11 + a13), E2 = 2/3− [a01 + a03 +
2(−a11 + a13 + a21 + a23)], E3 = −[−a01 + a03 + 3(a11 + a13) + 6(−a21 + a23)],
E4 = 2/5− [a01 +a03 + 4(−a11 +a13) + 12(a21 +a23)] and E5 =−[−a01 +a03 +
5(a11 +a13)+20(−a21 +a23)]. The algebraic system E0 =E1 =E2 =E3 =E4 =
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E5 = 0 has the solution

a01 = a03 = 1, a11 =−a13 =
2

5
, a21 = a23 =

1

15
.

With these the next moment is E6 =−32/35 6= 0 and therefore m= 6.
Q. E. D.

4. THREE-POINT RULES

The following theorem exists:
Theorem 3 The set of three-point rules and the Lagrange-like expression of their
errors are as follows:

- Version Q3
1 (standard Simpson rule):

Q[y]≈ h[y(−h) + 4y(0) +y(h)]/3,

E[h,a; y] =− 1

90
h5y(4)(η);

(14)

- Version Q3
2

Q[y]≈ 1

15
h[7y(−h) + 16y(0) + 7y(h)] +

1

15
h2[y′(−h)−y′(h)],

E[h,a; y] =
1

4725
h7y(6)(η);

(15)

- Version Q3
3

Q[y]≈ 1

21
h[5y(−h) + 32y(0) + 5y(h)]− 1

315
h3[y′′(−h)−32y′′(0) +y′′(h)],

E[h,a; y] =
1

396900
h9y(8)(η); (16)

- Version Q3
4

Q[y]≈ 1

105
h[41y(−h) + 128y(0) + 41y(h)] +

2

35
h2[y′(−h)−y′(h)]

+
1

315
h3[y′′(−h) + 16y(0) +y′′(h)],

E[h,a; y] =− 1

130977000
h11y(10)(η),

(17)

for some η ∈ (−h,h). The value of η may vary from one version to another.
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9 Context-dependent quadrature rules for scientific codes 283

Remark: the coefficients of the Simpson rule Q3
1 and the expression of its error can

be found in any standard textbook, e.g., [36]. The coefficients of versions Q3
2 and Q3

4

are also known, [18], but the Lagrange-like expression of their error and rule Q3
3 are

new.
Proof: Technically, this follows the same steps as for the previous theorem but the
volume of calculations is a bit larger. This is due to the fact that the number of
involved moments is bigger. In the following we examine each version and give the
main results for each step.
Version Q3

1:
- Parameters to be determined and their total number N : a01, a02, a03, i.e., N = 3
parameters.
- Expressions of the first N moments: E0 = 2− (a01 +a02 +a03), E1 =−(−a01 +
a03), E2 = 2/3− (a01 +a03).
- Solution of the algebraic system En = 0, n = 0,1, · · · ,N − 1: a01 = a03 = 1/3,
a02 = 4/3.
- Extra checks and the value of m: E3 = 0 but E4 =−4/15 6= 0, therefore m= 4.
Note the importance of the extra checks. Without them we might have been tempted
to assign the wrong value m= 3.
Version Q3

2:
- Parameters to be determined and their total number N : ak1, ak2, ak3, k = 0,1, i.e.,
N = 6 parameters.
- Expressions of the first N moments: E0 = 2− (a01 +a02 +a03), E1 =−(−a01 +
a03 + a11 + a12 + a13)), E2 = 2/3− [a01 + a03 + 2(−a11 + a13)], E3 = −[−a01 +
a03 +3(a11 +a13)], E4 = 2/5− [a01 +a03 +4(−a11 +a13)], E5 =−[−a01 +a03 +
5(a11 +a13)].
- Solution of the algebraic system En = 0, n = 0,1, · · · ,N − 1: a01 = a03 = 7/15,
a02 = 16/15, a11 =−a13 = 1/15, a12 = 0.
- Extra checks and the value of m: E6 = 16/105 6= 0, therefore m= 6.
Version Q3

3:
- Parameters to be determined and their total number N : ak1, ak2, ak3, k = 0,2, i.e.,
N = 6 parameters.
- Expressions of the first N moments: E0 = 2− (a01 +a02 +a03), E1 =−(−a01 +
a03), E2 = 2/3− [a01 +a03 + 2(a21 +a22 +a23)], E3 = −[−a01 +a03 + 6(−a21 +
a23)],E4 = 2/5− [a01+a03+12(a21+a23)],E5 =−[−a01+a03+20(−a21+a23)].
- Solution of the algebraic system En = 0, n = 0,1, · · · ,N − 1: a01 = a03 = 5/21,
a02 = 32/21, a21 = a23 =−1/315, a22 = 32/315.
- Extra checks and the value of m: E6 = E7 = 0 but E8 = 32/315 6= 0, therefore
m= 8.
Version Q3

4:
- Parameters to be determined and their total number N : ak1, ak2, ak3, k = 0,1,2,
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284 L. Gr. Ixaru 10

i.e., N = 9 parameters.
- Expressions of the first N moments: see eq.(9).
- Solution of the algebraic system En = 0, n= 0,1, · · · ,N −1: a01 = a03 = 41/105,
a02 = 128/105, a11 = a13 =−2/35, a12 = 0, a21 =−a23 = 1/315, a22 = 16/315.
- Extra checks and the value of m: E8 =E9 = 0 but E10 =−32/1155 6= 0, therefore
m= 10.

The results obtained above for the quadrature rules Q2 and Q3 allow drawing
some conclusions. First, we see that, as expected, the accuracy increases with the
number of input data in the corresponding versions. Thus the three-point versions
are more accurate than their two-point counterparts (compare the orders, i.e., the
powers of h in the error expressions) and within each of these two families the order
increases with the number of data at each point; the latter are one forQp

1 versions, two
for versions Qp

2 and Qp
3 and three for Qp

4, p = 2,3. Second, and this is a new issue,
the results allow answering a question of a different nature: how does the type of data
used in versions with the same number of input data/point influence the accuracy?
This is the case of versions Qp

2 and Qp
3 where the two data are y and y′, and y and

y′′, respectively. For the two-point versions the order is not modified but the error
constant is smaller for Q2

2 and therefore the use of y′ is more advantageous. This is
in contrast with the three-point versions where the use of y′′ is more advantageous
because the corresponding version, that is Q3

3, has a bigger order than Q3
2.

5. NUMERICAL ILLUSTRATION

We compute the integral

Q=

∫ 1

0
e5x sin5xdx=

1

10
e5x[sin(5x)− cos(5x)]|10 (18)

by all versions of two and three-point rules. We use h = 1/2,1/4,1/8,1/16, 1/32
and 1/64, that is with N = 1,2,4,8,16 and 32 two-step intervals. Once the version
and h are fixed the integral is computed numerically by that version on each of the
N two-step intervals and the individual results are summed. Let denote the value
computed this way as Qcomput(h). This and its error, ∆Q(h) = Q−Qcomput(h),
depend also on the version, of course.

The error ∆Q(h) behaves as hm because it is the sum of theN individual errors
and N ·hm+1 ∼ hm. As a consequence the ratio of the errors from the same version
at 2h and h, ∆Q(2h)/∆Q(h), should be around 2m. Possible deviations from this
value are due to the influence of the variation of factor y(m) over four successive
intervals of width h. This variation tends to be less and less important when h→ 0
and therefore that ratio will tend to the theoretical value in this limit.
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11 Context-dependent quadrature rules for scientific codes 285

Table 1.

Step width dependence of the absolute errors of the results given by the four versions of rule Q2 for

integral (18). Notation a(b) means a ·10b.

h Q2
1 Q2

2 Q2
3 Q2

4

1/ 2 0.53(+02) 0.11(+02) 0.14(+03) -0.16(+02)
1/ 4 0.14(+02) 0.30(+01) 0.20(+02) -0.29(+00)
1/ 8 0.29(+01) 0.24(+00) 0.14(+01) -0.35(-02)
1/16 0.67(+00) 0.15(-01) 0.93(-01) -0.50(-04)
1/32 0.17(+00) 0.97(-03) 0.58(-02) -0.76(-06)
1/64 0.41(-01) 0.61(-04) 0.36(-03) -0.12(-07)

Table 2.

The same as in Table 1 for the versions of rule Q3. The error from Q3
4 for h = 1/64 is zero within

machine accuracy for double precision computations (of approximately 16 decimal figures).

h Q3
1 Q3

2 Q3
3 Q3

4

1/ 2 0.52(+00) 0.25(+01) 0.98(-01) 0.14(-01)
1/ 4 -0.70(+00) 0.50(-01) -0.14(-02) 0.18(-04)
1/ 8 -0.59(-01) 0.60(-03) -0.80(-05) 0.13(-07)
1/16 -0.38(-02) 0.83(-05) -0.33(-07) 0.12(-10)
1/32 -0.24(-03) 0.13(-06) -0.13(-09) 0.11(-13)
1/64 -0.15(-04) 0.20(-08) -0.52(-12) 0.00(+00)

We have written a FORTRAN program in double precision and in Table 1 we
give the error ∆Q(h) for the two-point versions. It is seen that, as expected, the
decrease of the error with h becomes faster and faster when the number of accepted
data is increased. It is also confirmed the fact that the error decrease is similar for
versionsQ2

2 andQ2
3 and that for each step width h the error for the latter is by a factor

6 larger. Table 2 gives the same data for the three-point versions. The errors decrease
faster than for the two-point formulas and also, as predicted but in contrast to the
two-point case, the errors from Q3

3 are massively better than from Q3
3, especially for

small h.
Table 3 collects the ratios ∆Q(2h)/∆Q(h). The theoretical predictions that

these should tend to 4,16,16,64 for Q2 versions, and to 16,64,256,1024 for Q3

Table 3.

The ratio ∆Q(2h)/∆Q(h) for various values of the step width h.

h Q2
1 Q2

2 Q2
3 Q2

4 Q3
1 Q3

2 Q3
3 Q3

4

1/ 4 3.9 3.5 7.2 54.7 -0.7 51.1 -67.6 742.3
1/ 8 4.7 12.9 13.7 81.8 12.0 83.4 180.3 1361.9
1/16 4.3 15.4 15.6 70.8 15.3 71.6 242.4 1159.7
1/32 4.1 15.9 15.9 65.8 15.8 66.1 253.0 1081.7
1/64 4.0 16.0 16.0 64.5 16.0 64.5 254.0 −
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versions when h→ 0 are nicely confirmed.

6. CONCLUSIONS

We have presented a list of unusual quadrature rules whose main peculiarity is
that they accept not only the values of the integrand at the mesh points, as the stan-
dard rules, but also those of some of its derivatives. Since in many scientific codes
the latter data are often available as output from earlier stages of the current run, the
replacement in such codes of the standard rules with the new, context-dependent ones
leads to an increase of the accuracy at no extra cost. The procedure used for building
up these rules can be extended without difficulty on cases when more restrictions are
demanded, for example when the partition has non-equidistant steps.
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