APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY

ZHENGUO DENG and GUOCHENG WU

1 School of Mathematics and Information Science, Guangxi University, Nanning 530004, PR China
2 Key Laboratory of Numerical Simulation of Sichuan Province, Neijiang, Sichuan 641112, PR China
3 College of Mathematics and Information Science, Neijiang Normal University, Neijiang, Sichuan 641112, PR China
*E-mail: wuguocheng2002@yahoo.com.cn
Received July 21, 2010

Fractional differential equations have been caught much attention during the past decades. In this study, iteration formulae of a fractional differential equation with uncertainty are proposed and the approximate solutions for a simple case are derived via a fractional variational iteration method.

Key words: Modified Riemann-Liouville derivative; Fractional Variational Iteration Method; Fractional differential equations

1. INTRODUCTION

In the last decades, scientists and applied mathematicians have found fractional differential equations useful in various fields: rheology, quantitative biology, electrochemistry, scattering theory, diffusion, transport theory, probability potential theory and elasticity. For details, see the monographs of Kilbas et al. [1], Kiryakova [2], Lakshmikantham and Vatsala [3], Miller and Ross [4], and Podlubny [5].

Recently, Agarwal proposed the concept of solution for fractional differential equations with uncertainty [6]. One kind of differential equations with uncertainty of the type is governed by

\[
\frac{d^\alpha x(t)}{dt^\alpha} = f(t, x(t)), \quad 0 < t \leq T,
\]

where \(f(t, x(t)) \times E \to E \) is continuous, and \(x(0) = x_0 \in E \).

If \(f(t, x(t)) \times R \to R \) and \(x_0 \in R \), then Eq. (1) reduces to a fractional differential equation.

If \(\alpha = 1 \), then Eq. (1) is a fuzzy differential equation. Thus, Eq. (1) is a new dynamic system called fuzzy differential equations of fractional order. Agarwal et al. introduced the concept of solution for such system.

In this study, we adopt the modified Riemann-Liouville derivative [7] through this paper. The fractional derivative has been successfully used in fractional Lagrange mechanics [8], fractional variational approach [9, 10] and fractional Lie group method [11]. With a fractional variational iteration method [12, 13], approximate solutions of Eq. (1) are given.

2. PROPERTIES OF MODIFIED RIEMANN-LIOUVILLE DERIVATIVE

Comparing with the classical Caputo derivative, the definition of modified Reimann-Liouville derivative is not required to satisfy higher integer-order derivative than \(\alpha \). Secondly, \(\alpha \)-th derivative of a constant is zero. Now we introduce some properties of the fractional derivative. Assume \(f: \mathbb{R} \rightarrow \mathbb{R} \), \(x \rightarrow f(x) \) denote a continuous (but not necessarily differentiable) function in the interval \([0, 1]\). Through the fractional famous Riemann-Liouville integral

\[
\int_0^x (x - \xi)^{\alpha - 1} f(\xi) d\xi, \quad \alpha > 0,
\]

the modified Riemann-Liouville derivative is defined as [7]

\[
D_0^\alpha f(x) = \frac{1}{\Gamma(1-\alpha)} \frac{d}{dx} \int_0^x (x - \xi)^{-\alpha} (f(\xi) - f(0)) d\xi,
\]

where \(x \in [0,1] \) and \(0 < \alpha < 1 \).

In the next sections, we will use the integration with respect to \((dx)^\alpha\) (Lemma 2.1 of [14])

\[
\int_0^x f(\xi) d\xi = \frac{1}{\Gamma(\alpha + 1)} \int_0^x (\xi) (d\xi)^\alpha, 0 < \alpha \leq 1.
\]

3. FRACTIONAL VARIATIONAL ITERATION METHOD

The variational iteration method for differential equations has been extensively worked out for many years by numerous authors. In this method, the equations are initially approximated with possible unknowns. A correction functional is established by the general Lagrange multiplier which can be identified optimally via the variational theory. Besides, the VIM has no restrictions or
unrealistic assumptions such as linearization or small parameters that are used in the nonlinear operators. We consider the simple case of Eq. (1) to illustrate the fractional variational iteration method.

One of the linear fractional equations is
\[
\frac{d^\alpha x(t)}{dt^\alpha} + ax(t) = d(t), \quad 0 < t \leq T, \quad 0 < \alpha \leq 1, \quad a \in R. \tag{5}
\]

Then we can construct the following iteration form
\[
x_{n+1}(t) = x_n(t) + \frac{1}{\Gamma(1+\alpha)} \int_0^t \lambda(t, \tau) \left(\frac{\partial^\alpha x_n(\tau)}{\partial \tau^\alpha} + ax_n(\tau) - d(\tau) \right)(d\tau)^\alpha, \tag{6}
\]
where \(\lambda(t, \tau) \) is unknown and to be determined.

With the fractional variational theory, we can find
\[
\delta x_{n+1}(t) = \delta x_n(t) + \frac{\delta}{\Gamma(1+\alpha)} \int_0^t \lambda(t, \tau) \left(\frac{\partial^\alpha x_n(\tau)}{\partial \tau^\alpha} + ax_n(\tau) - d(\tau) \right)(d\tau)^\alpha
\]
\[
= (1 + \lambda|_{t=\tau}) \delta x_n(t) - \frac{1}{\Gamma(1+\alpha)} \int_0^t (\lambda(\alpha) + a\lambda) \delta x_n(t)(d\tau)^\alpha. \tag{7}
\]

\(\lambda(t, \tau) \) must satisfy
\[
1 + \lambda|_{t=\tau} = 0 \quad \text{and} \quad \lambda^{(\alpha)} - a\lambda = 0. \tag{8}
\]
As a result, \(\lambda(t, \tau) \) can be identified explicitly
\[
\lambda(t, \tau) = -E_\alpha \left(a(t - \tau)^\alpha \right), \tag{9}
\]
where \(E_\alpha (a(t - \tau)^\alpha) \) is defined by the classical Mittag-Leffler function
\[
E_\alpha(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(1+\alpha k)}. \tag{10}
\]
Therefore, we can obtain the following iteration formulae for Eq. (5),
\[
x_{n+1}(t) = x_n(t) - \frac{1}{\Gamma(1+\alpha)} \int_0^t E_\alpha \left(a(t - \tau)^\alpha \right) \left(\frac{\partial^\alpha x_n(\tau)}{\partial \tau^\alpha} + ax_n(\tau) - d(\tau) \right)(d\tau)^\alpha.
\]
On the other hand, if \(x_n(\tau) \) is handled as a restricted variation in Eq. (9), similarly, the Lagrange multiplier can be identified by
\[
1 + \lambda|_{t=\tau} = 0 \quad \text{and} \quad \lambda^{(\alpha)} = 0.
\]
As a result, we can derive the generalized multiplier

\[\lambda(t, \tau) = -1. \]

If we assume \(d(t) = 0 \) for simplicity, we can have the iteration form

\[
x_{n+1}(t) = x_n(t) - \frac{1}{\Gamma(1+\alpha)} \left\{ \int_0^t \frac{\partial^\alpha x_n(\tau)}{\partial \tau^\alpha} - ax_n(\tau) \right\}(d\tau)\alpha.
\]

(11)

Start from \(x_0(t) = x(0) \), we can obtain

\[
x_1(t) = x_0(t) - \frac{1}{\Gamma(1+\alpha)} \left\{ \int_0^t \frac{\partial^\alpha x_0(\tau)}{\partial \tau^\alpha} - ax_0(\tau) \right\}(d\tau)\alpha
\]

\[= x_0 - \frac{ax_0 t^\alpha}{\Gamma(1+\alpha)},\]

\[
x_2(t) = x_1(t) - \frac{1}{\Gamma(1+\alpha)} \left\{ \int_0^t \frac{\partial^\alpha x_1(\tau)}{\partial \tau^\alpha} - ax_1(\tau) \right\}(d\tau)\alpha
\]

\[= x_0 - \frac{ax_0 t^\alpha}{\Gamma(1+\alpha)} + \frac{a^2 x_0 t^{2\alpha}}{\Gamma(1+2\alpha)},\]

\[
x_3(t) = x_2(t) - \frac{1}{\Gamma(1+\alpha)} \left\{ \int_0^t \frac{\partial^\alpha x_2(\tau)}{\partial \tau^\alpha} - ax_2(\tau) \right\}(d\tau)\alpha
\]

\[= x_0 - \frac{ax_0 t^\alpha}{\Gamma(1+\alpha)} + \frac{a^2 x_0 t^{2\alpha}}{\Gamma(1+2\alpha)} - \frac{a^3 x_0 t^{3\alpha}}{\Gamma(1+3\alpha)},\]

The iteration process leads to the result

\[
x(t) = \sum_{k=0}^\infty x_k(t) = x_0 \sum_{k=0}^\infty (-1)^k t^{k\alpha} = x_0 E_\alpha (-at^\alpha).
\]

(12)

We can check Eq. (12) is the exact solution of the following equation

\[
\frac{d^\alpha x(t)}{dt^\alpha} + ax(t) = 0, \quad 0 < t \leq T, \quad 0 < \alpha \leq 1, \quad a \in R.
\]

4. CONCLUSIONS

In this study, approximate solution of a fractional differential equation is investigated by fractional variational iteration method. Compared with the previous works via variational iteration method, this paper establishes a fractional functional
and derives a generalized Lagrange multiplier for the given fractional differential equation. This approach can be used to solve other fractional nonlinear differential equations.

REFERENCES