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It is shown that, if one introduces the hydrodynamic formulation of Scale
Relativity Theory (SRT) into the Time Dependent Ginzburg-Landau (TDGL) model,
the London gauge and the zero momentum of the Copper pairs (i.e. the London
equations) arise naturally. Then, a particular relation between the fractal coefficient,
friction coefficient and the (dimensionless) Ginzburg-Landau parameter which yields
a natural gauge for the TDGL equation, is obtained. If the value of the real velocity
of the Copper pairs tends to zero, the imaginary velocity of the pairs becomes real.
The subquantum potential is proportional to the density of the Copper pairs. Moreover,
under special circumstances, the superconductor acts as a subquantum medium
energy accumulator.

1. INTRODUCTION

In the Ginzburg-Landau theory of phase transitions [1–3], the state of a
superconducting material near the critical temperature is described by a
complex-valued order parameter ψ, a real valued vector potential A, and, when
the state changes with time, a real-valued scalar potential φ. The role of φ differs
from that of ψ and A: the latter is formed by predictive variables, whose
evolution is governed by differential equations; the former resembles a Lagrange
multiplier more. After suitable non-dimensioning, the equations and boundary
conditions satisfied by ψ and A are as follows [1–3]
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The domain Ω corresponds to the region occupied by the superconducting
material. We assume that it is bounded, Ω ⊂ ℜD with D = 2 or 3, and that its
boundary ∂Ω is regular enough; n denotes the outer unit normal to ∂Ω. As usual,
∇ ≡ grad, ∇ × ≡ curl, ∇ ⋅ ≡ div, and ∇2 = ∇⋅∇ ≡ Δ. Furthermore, i is the
imaginary unit, and a superscript * denotes complex conjugation. The parameters
of the model are η, a (dimensionless) friction coefficient; k, the (dimensionless)
Ginzburg-Landau parameter; and γ, a non-negative parameter, which is zero if
the supercondcuting material is surrounded by vacuum. The H field vector is a
given applied magnetic field; in practice, H is either time-independent or time-
periodic. The quantity Js is the so-called super-current or, more correctly, super-
current density. The super-current is a phenomenological quantity, which is
considered a flux of moving “super-electrons”. The super-electrons (or Cooper

pairs), whose density is 2 ,sn = ψ  are responsible for the superconducting

properties of the material. For example, the super-current prevents a magnetic
field from penetrating a superconducting region. Note that t= −∂ ∂ −∇φE A  is
the electric field and = ∇×B A  the magnetic induction. Therefore, equation (2)
may be viewed as Ampere’s law, ,∇× =B J  where the total current J is the sum
of a “normal“ current Jn = E, the super-current Js, and the transport current

t = ∇×J H . The normal current obeys Ohm’s law; the “normal conductivity”
coefficient is equal to one in the chosen system of units.

The system of equations (1)–(5), with appropriate initial conditions,
constitutes the TDGL model of superconductivity. In the present paper some
interesting results on the superconducting state are obtaines, if one introduces the
SRT in the TDGL model.

2. MATHEMATICAL  MODEL

Let us write the time-dependent Ginzburg-Landau equation, considering
the nondifferentiability (fractality) of space-time for small scales, i.e. by
introducing the covariant derivative of the scale relativity theory [4–6]
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tt iδ δ = ∂ + ⋅∇ − ΔV D (6)

where the mean velocity V is now complex, and D is a parameter characterizing
the fractal behavior of trajectories (diffusion coefficient). Note that in the
Ginzburg-Landau theory of phase transitions [5], the state of a superconducting
material near the critical temperature is described by a complex-valued order
parameter ,iSAeψ =  a real-valued vector potential A, and, when the state

changes with time, a real-valued scalar potential φ.
The initial system of two non-linear partial derivative equations splits into

four equations, two real and two imaginary ones.
The real part of the TDGL system using the zero-electric potential gauge

[7] is written as follows:
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and the imaginary part:
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Here we used the complex velocity [4–6]
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It is difficult to solve the system of non-linear partial derivative equations
(7)–(10). In order to find an analytical solution here, we try a simplification of
this system, first by reducing the problem to the one-dimensional case. Let us
project the system along the Ox axis. One gets the real part:
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and the imaginary one:
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In the resulting real and imaginary parts of equations (12)–(15), we operate
the following substitutions (the hydrodynamic formulation of the SRT [4–6]):

( ) ( )x x2 ,     2 ,    ln 2 lnx x x xm v m S S u m A A= = ∂ = ∂ = − ∂ = − ∂= = =D D D (16)

and it can be easily noticed, that the following relation will result and will be
also used in the forthcoming simplifications:

( ) ( ) 111 22 4xx x x xA A u u
−−− ∂ = − ∂ +D D2 (17)

Finally, after considering the stationary isolated case (the external magnetic
field is null ( ) 0),x∇× =H  and using (16) and (17) we obtain the real and

imaginary part of equations (12)–(15):
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The imaginary parts of the computed set of equations, (19) and (21), offer
an interesting result. First of all, in order to satisfy the equation (19), the
following two relations result :

2 0x x x xv A A= κ ∂ =D (22a,b)

The first relation is nothing but the condition for a zero momentum of the
superconducting pair, and is the London equation (for other details see [7]). As it
is known, this equation is not gauge invariant, therefore it can be correct only for
a particular choice of the gauge. The choice is the London gauge specified by div
A = 0. The second relation, is nothing but one-dimensional London gauge.
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Consequently, this equation is automatically satisfied; the same happens to
equation (21). In other words, equations (19) and (21) are nothing but the
London equations, which naturally results from the TDGL system completed
with the hydrodynamic formulation of the scale relativity (SR).

Now, the system (18)–(21) reduces to the following second degree
equation in ux (by eliminating the partial derivative in x of ux) and assuming
(22a,b) holds:

( ) 12 2 2 22 1 0x x x xu A u A A
−

κ + ηκ + − + =D2 (23)

which has the straightforward solution:

( ) ( )
1,2

3 2 2 2 2 2 2 22 1x x xu A A A− −= −ηκ ± κ η κ − κ − κ −D D D D2 2 -2 -2 (24)

with η a (dimensionless) friction coefficient, κ the (dimensionless) Ginzburg-
Landau parameter, D the diffusion coefficient, Ax the vector potential and A2 the
concentration of the Copper pairs.

Let us analyze the solution (24) which contains some interesting results, as
can be notices in the following. If, for the friction coefficient value, one chooses

the value 22η = ± κ D  that annuls the paranthesis under the square root, then

(24) takes a simpler form ( )1,2

22 1 .x xu A i A= κ − −∓ D  First, we can focus on

the particular relation 22 ,η = ± κ D  among the diffusion coefficient, the
(dimensionless) friction coefficient and the (dimensionless) Ginzburg-Landau
parameter which gives a new natural gauge for the TDGL equation. Here

22ω≡ = ± κ ηD  resulted in a natural manner, from the TDGL system
completed with the hydrodynamic formulation of scale relativity. Secondly, we
can get an interesting case if the real velocity of the pair is equated to zero, i.e.

vx = 0 (that is Ax = 0 – the Copper pairs are “freezing”) 
1,2

22 1xu i A= ± κ − =D

( ) 1 21 .i A−= ± κη −  Here, if we put the real velocity v = 0, we still obtain a non-

zero velocity ( ) 12 22 1 2 1A A−= ± κ − = ± κη −DV  coming from the

complex part of Nottale’s velocity, in other words the complex velocity u
becomes real.

At the same time, if the complex velocity u is substituted in the subquantum
potential, and the expression 22η = ± κ D  of the diffusion coefficient, as a
result of using the more general φ + ωdivA = 0 gauge [7], we obtain

( )( )1 2 22 2 1 .Q m m m A−= − ∇ ⋅ − = η −∓u uD D  The subquantum potential



246 M. Agop, M. Buzdugan, V. Enache 6

takes now a very simple expression which is directly proportional to the density
of states of Copper pairs. When the density of states of Copper pairs becomes
zero (i.e. the material is normal) the subquantum potential has a finite value,

2m η∓ D  and when it becomes 1 (i.e. the entire material becomes
superconducting), the subquantum potential turns to zero – the entire quantity of
energy from the subquantum medium transfers to the superconducting pairs.
Consequently, one can assume that the energy from the background subquantum
medium can be stocked by transforming all the particles from the environment
into Copper pairs and then “freezing” them. The superconductor acts like a
subquantum medium energy accumulator.

3. CONCLUSIONS

The main conclusions of the present paper are the followings:
i) the London equations come naturally from the imaginary equations;
ii) the particular relation among the diffusion coefficient, the (dimensionless)

friction coefficient and the (dimensionless) Ginzburg-Landau parameter
yields a new natural gauge for the TDGL equation;

iii) if one equates to zero the real velocity v of the Copper pairs, i.e. for a
coherence quantum fluid, the imaginary velocity u of the Nottale’s
complex speed turns real;

iv) the subquantum potential takes a very simple expression which is directly
proportional to the density of states of the Copper pairs;

v) the energy from the subquantum fluid can be stocked by transforming all
the particles from the environment into Copper pairs and then “freezing”
them, i.e. the superconducting fluid can act like a subquantum medium
energy accumulator.
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